Dwight Look College of
AHM ENGINEERING
®

TEXAS A&M UNIVERSITY

Accelerated Design of Fusion Materials
Raymundo Arroyave




Duwight Look College of

ENGINEERING

TEXAS A&M UNIVERSITY

Questions:

TSI 7

What promising Al / ML architectures can be used for rapid discovery of new fusion materials? How
might these work with material computational modeling tools? What are the pros and cons of these
approaches?

Without considering economics, how confident are you that we can use ML/AI to find a better
performing alloy to serve as PFC (plasma facing component) material to replace the current leading
candidates (e.g., RAFM, W, VACrA4Ti)?

Which of the following properties in Table 1.1., if any, do you believe is infeasible to optimize based on
current ML/AI tools for material discovery, and why?

Can you name any additional material properties that should be optimized to make an impact for
commercial FPPs? What are the relevant ranges of those properties? What tests do you need to validate
these properties?

Is it feasible for current ML/AL tools to automatically generate new material specifications for existing
manufacturers to fabricate commercial fusion components? If not, what is missing?

What other opportunities/challenges/issues at code and simulation level for rapid material design
should we consider?
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Materials informatics can generate “inverse models” for optimization and design
e.g. Maximize a Property such that Structure follows some constraints

Materials discovery has to be a
goal-oriented activity

« Materials discovery is about
navigating the materials space,
with a purpose

Science relationships of cause and effect

Materials informatics can generate “forward models” for predictive analytics
e.g. Property = f(Processing, Composition, Structure)

[2016 Agrawal]
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Materials Design is very challenging

However, navigating this space is incredibly difficult/costly:

Technology Challenges are Materials-Agnostic Materials Spaces are Costly to Query

@eramics

Space of Material Systems
‘ ==t Polymers

Metamaterials @omposntes

[2016 Paredis]

“Smart”
Material
Systems

o
—

Annu. Rev. Mater. Res. 2015. 45:171-93
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Mul’riple (Competing) Objectives
« Multiple Constraints (problem can Notional Example:
be constraint-dominated)

= ﬂ
Temperature neutron neutron
. (RT) uivalent) and uivalent) and
« Models and Experiments have & 1300

>250 MPa >100 MPa >250 MPa >150 MPa
limits: -350MPa 200 MPa >350 MPa >250 MPa
* Models are incomplete
- Experiments are expensive A RIS i -soMP
 Models gnd experiments are — i LA e =
un CeI’TCI N . NA NA <100 pm/yr <100 pm/yr
* Some Derformance me.TFICS >50,000 >50,000 >10,000 >10,000
require |an exposure '|'|mes Total Activation Dose NA NA <5Rem <5Rem
. . . on contact after 24hrs) - Rem
« Materials discovery problem is
dynamic:

« Externalities matter (i.e. supply
chain is dynamic)
« Preferences evolve 5
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Opportunities in Materials Design

T

Machine Learning for decision-making, inference and acceleration of
simulations hold significant promise

Increasing speed, automation, and scale Accelerated
Discovery
Em- y | Hypol' &
Big Data-driven j’ \
Science ] Accelerated i
N estiof PR Test
Computational th : WIEEN  scientific —
Sci 4™ Paradigm \ Method l
Theoretical cience i 3
. i d Paradigm > s
Empirical Science S Padig roport IR s:css |
Science 2" Paradigm Sl
1st Paradigm
Scientific laws Simulations Big data, machine learning Scientific knowledge at scale
Observations Physics, biology, Molecular dynamics Patterns, anomalies Al generated hypotheses
Experimentation chemistry, etc Mechanistic models Visualization Autonomous testing
e = | ]
1. 1950s 2 2020s.

[Pyzer-Knapp 2022]
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« Frameworks must deal with
constraints effectively

 Frameworks must be capable of
exploring and exploiting materials
design space efficiently

+ They must be able to incorporate
experiments and simulations

« They must incorporate as much
physics knowledge as possible

. TheY must be capable of
exploiting high-throughput
capabilities

* They must be dynamic and

account for evolution in the
problem definition itself

Al-Enabled Materials Discovery
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* In many challenging materials ‘ ,
discovery problems (e.g. fusion ~
materials), much of the available .
space is infeasible e 9

precious resources if there is not. = =
certainty in feasibility of @ .
candidate design point

Ty,1300C
0.15

. Itis very inefficient to waste U
A

0.10

« Better approach is to saftisfy Py 5\
constraints first, optimize later V s

0.05

0.00
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* In many challenging materials
discovery problems (e.g. fusion
materials), much of the available
space is infeasible

« |tis very inefficient to waste
precious resources if there is not
certainty in feasibility of @
candidate design point

« Better approach is to saftisfy
constraints first, optimize later

Constraint-Limited Problems

Intermediate

Initial Population

Population

Final Population

Explore Design Space:

Thermodynamic Conditions Phase Constitution/
Composition Space

Temperature

wes ey
Classity for feasibility:
Members that do not satisfy C are not|
included in the Domain Description

Temperature
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Exploration/exploitation of a
(computational) experiment
space should not be random

Unfortunately, each
experiment/computation often
times is extremely costly

With “open loop"” approaches
there is no prescription of what
to do hext once more
knowledge has been gained

large

Property (arb. units)

uncertainty
(exploration)

The Big Picture

largest mean
(exploitation)

best so far

A 4

Feature space

[2016 Balachandran]
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http://www.nature.com/articles/srep19660
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Discovery as a (Black
Whn quenés to the experimental BOX) OphleOhOn

design space are expensive, we

need to do better than random Model
exploration chlectie ., M HCLE) ‘
Bayesian Methods: ‘ _22 :
Prior | Posterior - 102\
p6) | Bayes p(6ly.d) :
Theorem ! =
"Beliefs"
"Bayesian
priors"

Bayesian Optimization:
Prediction of Outcomes +
Prescriptive Policies
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https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwj90-nhj4fTAhVK7WMKHct5AboQFggjMAE&url=http://haikufactory.com/files/bayopt.pdf&usg=AFQjCNFrZ_QkOCIiQ5BkHoRNE3RbyjtGOQ&sig2=gapaZXgDHWlMsD3BLVC2Aw
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e g Typical SOA
Initial Data Select Single (or many) Experiment(s)

“Autonomous systems [should] build and
exploit own internal models [and act on
them]"”"—N. Freitas

[Azimi] Run Experiment(s) 12
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Is that all there is?

Most approaches to date to autonomous materials discovery can be

mapped to a sequential ‘black-box’ optimization problem

Such approaches tend to be limited, since:

* One has potentially multiple gray boxes, instead of a single black box

* |tis generally necessary to account for multiple objectives and
constraints simultaneously

« Sequential (one-by-one) experimentation is highly inefficient

* Incorporating physics/chemistry priors into ML/Al frameworks can
accelerate process

13
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 What if we have mulfiple
Information sources at
our disposale

* In materials science, we
often have multiple
sources of information af
our disposal

Combining Multiple Information
Sources

(33 <' u

15°, 30% reduction

14
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Ousentangled multenodal
embedding

[Trask 2022]

Combining Multiple Information
Sources

Multl Informatlon Source BO
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Conven’nonol BO:

* Makes strong assumption about shape
and ‘roughness’ of underlying function
(e.g. hyperparameters given sparse
data)

» Location of optimal region(s) is highly
dependent on these assumptions

» This is very risky when the amount of data
is small

. Al’rema’re Approach:

Assume that all shapes are p055|ble
(‘roughness’ of the function is multi scale)

« Compute acquisition function for many
possible hyperparameters at the same
time

T. T. Joy, S. Rana, S. Gupta, and S. Venkatesh, “Batch Bayesian
optimization using multi-scale search,” Knowledge-Based Systems,

Jun. 2019, doi: 10.1016/j.knosys.2019.06.026.

Exploiting HTP Facilities
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Bayesian Classification
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BIRDSHOT

Batch-wise Improvement in Reduced Besign

Space using a Holistic Optimization Technique 2
FEAS
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SOA Alloy Design

Example: Application of BIRDSHOT to ULTIMATE

Two-year | Go/No-Go ¢ Confidence
P;;?Jz:r :c’:::::: Project |acceptance Infg;:':::on Model Fidelity | in meeting | Reasoning
Target at Q5 Go/No-Go
Apparent
density MS5 _ : Extremely
Density using <9g/cc | <11g/cc | Property High Fidelity High accurate
Archimedes Model } prediction
method
Room Uniaxial
Temperature ; MS6 DFT Nb+Ta
Tensile tens('lf) (R >1% Pugh Ratio Modeidte constraint
Ductility
0.2% Tensile Uniaxial Augmented
Yield 2 MS7 Medium model
Strength at tens(ll1e) test | > 400 MPa | > 200 MPa Experiment Fidelity Moderate predict
1300 °C solns. exist
MS5 ~30 W/m/K
Thermal | Laserflash | RT:9-12 Medium A et
S >8W/mK | Property High for RHEAs in
Conductivity | method W/mK Model Fidelity general
Linear =
MS5 ~10* % for
ETherm-al Dilatometry <2% <3% Property Mgdigm High RHEAs in
Xpansion Model Fidelity 2> el
(RT-1300°C) gener:
200 MPa, Uniaxial Contrell-
100h creep tensile o Jaswon
strain at creep test 2% n/a L Moderate Model for
1300 °C (1) Min. Creep

(MPa)
g

(Ductility)

WP Smen o ha o

Density Pugh Ratio 1300°CYS

(g/cc)

CTE
(1/K)

(W/m/K)
S

o
1

=

2
N
1

Pred. Thermal

(1/s)

Creep Rate Cond.
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Where do we move from here?
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Standard BO uses off-the-shelf
kernel functions that assume a
Euclidean space

This may not be the best
representation of the problem

It may also lead to unsafe design
choices

A solution could be to inject
physics/chemistry priors into the
kernel function itself

In ChemBO, for example, the
kernel was constructed over the
molecular graph space

Add Physics/Chemistry to BO

QED optimization

[Korovina 2020]
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2 1 \2
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ki, ') =0, exp (— ST ) k(z,2') =olexp | —X O
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Processing/
Chemistry

l innealing ~
i i ﬁ
v Mn
| / Quenching

T Time

mperature
Heating

C—

Example: we have compared
microstructure-agnostic BO vs
microstructure-aware BO

Our results have shown that explicitly
exploiting PSP relationships leads to faster

solutions than when only exploiting PP

Objective Value

o

Add PSP Relationships to

BO

300
250
200
50

5100

Average l(crulions

50 100 150 200 250 300 26 28 30 32
Iterations Average Objective Value
-@- Microstructure Aware =l = Microstructure Agnostic
J

0.4

0.3 1

fm,wrl

0.1

0.2 1

—Microstructure Aware
——Microstructure Agnostic

50 100 150 200 250 300

Iterations J

[Khatamsaz 2022]
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* Physics-based models are
expensive
 They can be accelerated
using ML
 There are many examples
relevant to fusion/fission:
ML Potentials
ML Accelerated MD
» ML Accelerated KMC

Accelerate Physics-based Models

2| Repubive part § Vacsoe :_' .
Z|| —owe— 7 B lomplex S
- So{ s Disiocation
out-olf I
oo som | o
TR L Trapping/detrapping |
Distan SIA-solute 2 mobile defects &
complex L abso rptl ‘
s
fac .

Cohesive model

-
Single V: 4
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> efect vy
Interatomic potential (1AP) Mjgction | emaw a0 9¢ e /
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@@ Neural-network potential (NNP) defect g aton
Equilibrium pesition R mngrg(}o:\ B vac ‘
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F ] -
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SIA ., defect
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Multiscale
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Density functional theory (DFT)

ﬁ Atomistic Monte Carlo
=~ " 4 Atomistic kinetic MC (AKMC)
Experimental evidence Molecular Dynamics Metropolis MC (MMC)

[Castin 2018 CMS]
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The information source augments the prior model. The output of the posterior model
(surrogate) can then be used as a physics-based feature for subequent models

DFT Pugh Ratio

Pugh Ratio
Surrogate
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Augment Data-only models with Priors

New Surrogate Model Old Surrogate Model Curtin-Maresca Model

o Testioal
o Tstfoa2
o Wstfodl
o Wstroida °
o Testfods

|

1 Vickers Hardness Yield Strength

1

1 Batch Bayesian Optimization
|

|

Predicted Hardness (HV)

Augments (Strength-Ductility)
v

Featyre Hardness Yield Sti
Surrogate

rength
Surrogate

Test Fold 0

Test Foid 1

Prior

MAE = 128 MPa }‘ M MAE = 154 MPa

Experimental Yield Strength (MPa)

Cheap Proxy Experiment for Yield Strength F-Xperlmental Yleld Strength (MPa)

[Vela 2023]
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« Physics-based models are
expensive
 They can be accelerated
using ML
* There are many examples
relevant to fusion/fission:
ML Potentials
ML Accelerated MD
ML Accelerated KMC
* Physics Informed NNs

Accelerate Physics-based Models

PDE L(u(x,t),0) = 9.

[Roy 2022]
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Develop Integrated
Synthesis/Characterization/Testing Platforms

Data Curation,
Machine Learning,

Experimental Design

Fe e (Soma

o Metallography Preparation

, -
._w.nd‘ L " ‘,, / A < - : ‘ ,

and

-

Analysis Testing
and and
Tabulation Characterization

[Karaman 2023]
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Develop Accelerated HTP Irradiation Tests

Multiple (kinds of) radiations e
Multiple temperatures
Multiple energies

[Shao 2022]

28




Dwight Look College of
I‘ ENGINEERING
®

TEXAS A&M UNIVERSITY

Example: HTP Oxidation

Sample attached _m

e —

+ Polishing with customized sample holder (3.5°)
+ Polishing both top and bottom

» Place the sample inside box
furnace
» Varying parameters

3°

» Place the sample on top of |
alumina rods ’ -
+ Minimize contact area between W. . ; :
sample and rods R
b I e B T

Design Samples for HTP Characterization

Mixed oxide with
Chromium, Niobium [+
Oxide

Non-oxidized sample

Tip of the wedge sample at 1300°C Smin

Chromlum Oxide —

Mixed oxide with
Chromium, Niobium
Oxide

‘___ r

10mm
Wedge shaped sample

l

E— em—

2mm

./’__’__,—

Tip of the wedge sample at 1300°C 1min Middle of the wedge sample at 1300°C Smin

' Molybdenum oxide

Middle of the wedge sample at 1300°C 1min Middle of the wedge sample at 1300°C 5min

[Radovic 2022]
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Develop Fast Methods to Assess Long-
evolving Properties

Momum

High Cycle Fatigue resistance assessment after one

y R=-1 R=0
® 718 Precipitation strengthened (GS: 61um)
@ 718 Precipitation strengthened (GS: 19um)
" t @ René88DT (room temperature)
100 X
(nm)1 71 René88DT (high temperature)
5 S 718 Solid-solution strengthened
o\ 59 5 Titanium Ti-6A1-4V (with MTRs)
( 83 5 718 Solid-solution ~i i e
0% N % 0% N 5B < 80 (GS:61um),R=-1_
Loading (\ ( = Loadmg CE] D ® René88DT
direction 0 direction @ °® & (high temperature)
“ - (0]
7 m o
° 7 René88DT
" o — 60 O (room temperature)
S R
2 . 718 (GS: 61um),
— >
v After tension ..(E \b_ R=0 .718 (GS: 19um)
2 o b 3]
$ O~ 40
; N
¢ T
2 £ 718 (GS: 61pum), R=-1
£ = [e]
k' O
& Z 20
2
i P Yield strength (MPa) %
nd of first cycle End of first cycle - -
0
0 100 200 300 400 500

Slip localization amplitude
after 15 cycle (nm)

[Stinville 2022] 30
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Blue-Sky: Develop Integrated Cyber-Physical Platforms

Self-driven Laboratories: In practice:
Decision-Making
(A) High-throughput experimentation (B) Navigating the candidate space (C) self-driving laboratories Al g O ri -I- h m * + R O b O ﬁ C S

Conditions

= h

% e ®
g . 5

Trends in Chemistry e 3
3 :
¥
o
Q. Q0 QQ

[Haase' 2019] 2 Control software
Conditions |
Experiment planning algorithms Automated robotics platforms
Measurements

Trends in Chemistry

*Given their data-efficiency, most algorithmic decision support is based on
Bayesian Optimization (BO) approaches
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What promising Al / ML architectures can be used for rapid discovery of new fusion materials? How might
these work with material computational modeling tools? What are the pros and cons of these
approaches?
*  BO-based approaches, Physics—Informed ML Inference and Acceleration
2. Without considering economics, how confident are you that we can use ML/AI to find a better performing
alloy to serve as PFC (plasma facing component) material to replace the current leading candidates (e.g.,
RAFM, W, VACr4Ti)?
* |am (mildly) confident that there may be better options than current candidates
3.  Which of the following properties in Table 1.1., if any, do you believe is infeasible to optimize based on
current ML/AI tools for material discovery, and why?
* % elongation at fracture, swelling, creep, fatigue will be extremely challenging to design for
4. Canyou name any additional material properties that should be optimized to make an impact for
commercial FPPs? What are the relevant ranges of those properties? What tests do you need to validate
these properties? —No idea
5. Isit feasible for current ML/AL tools to automatically generate new material specifications for existing
manufacturers to fabricate commercial fusion components? If not, what is missing?
*  To make this possible, we must consider co-design (materials and process)
6. What other opportunities/challenges/issues at code and simulation level for rapid material design should
we consider? 32
*  Orders of magnitude acceleration (diffusive times at atomic scales)

My own (naive) thoughts

i
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Alloy discovery occurs in the sparse data

regime (this is NOT a big data problem)

*  From our experience, iterative alloy discovery
loops with multiple objectives and
constraints with de-localized resources have a
discovery rate ~20 alloys/month

*  Deployment of BO itself can be quite
expensive, requiring supercomputing power
(~1000 cores for 3 days per iteration)

* Integrated synthesis-processing-
characterization-testing platforms may
accelerate discovery rate (~20 alloys/week?)

*  Rate of discovery is limited by slowest task in
discovery loop

*  Further advantages arise when using physics-
informed ML

* |deally, we want cyber-physical platforms,
with experimental platforms coupled with

dedicated supercomputing resources

CHEMICAL
SPACE

DOMAIN
KNOWLEDGE

CHEMICAL
SIGNATURES

Final Remarks

Al-GUIDED
EXPERIMENTS

SUOIPAIg

Properties Feedback

ICROSTRUCTURE
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DATA
INFRASTRUCTURE

SCIENTIFIC
HTP EXPERIMENTATION MACHINE L
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Thanks!




