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Questions:

1. What promising AI / ML architectures can be used for rapid discovery of new fusion materials? How 
might these work with material computational modeling tools? What are the pros and cons of these 
approaches?

2. Without considering economics, how confident are you that we can use ML/AI to find a better 
performing alloy to serve as PFC (plasma facing component) material to replace the current leading 
candidates (e.g., RAFM, W, V4Cr4Ti)? 

3. Which of the following properties in Table 1.1., if any, do you believe is infeasible to optimize based on 
current ML/AI tools for material discovery, and why?  

4. Can you name any additional material properties that should be optimized to make an impact for 
commercial FPPs? What are the relevant ranges of those properties? What tests do you need to validate 
these properties? 

5. Is it feasible for current ML/AL tools to automatically generate new material specifications for existing 
manufacturers to fabricate commercial fusion components?  If not, what is missing? 

6. What other opportunities/challenges/issues at code and simulation level for rapid material design 
should we consider? 
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What is materials design?

[2016 Agrawal]

Accelerated Materials Discovery as a Goal-oriented Activity:

• Materials discovery has to be a 
goal-oriented activity

• Materials discovery is about 
navigating the materials space, 
with a purpose
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Materials Design is very challenging

However, navigating this space is incredibly difficult/costly:

[2016 Paredis]
Annu. Rev. Mater. Res. 2015. 45:171–93

Technology Challenges are Materials-Agnostic Materials Spaces are Costly to Query

http://d3em.tamu.edu/wp-content/uploads/2016/04/Paredis.pdf
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Challenges in Materials Design

• Multiple (Competing) Objectives
• Multiple Constraints (problem can 

be constraint-dominated)
• Models and Experiments have 

limits:
• Models are incomplete
• Experiments are expensive
• Models and experiments are 

uncertain
• Some performance metrics 

require long exposure times
• Materials discovery problem is 

dynamic:
• Externalities matter (i.e. supply 

chain is dynamic)
• Preferences evolve

Notional Example:
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Machine Learning for decision-making, inference and acceleration of 
simulations hold significant promise

Opportunities in Materials Design

https://www.nature.com/articles/s41524-022-00765-z


• Frameworks must deal with 
constraints effectively

• Frameworks must be capable of 
exploring and exploiting materials 
design space efficiently

• They must be able to incorporate 
experiments and simulations

• They must incorporate as much 
physics knowledge as possible

• They must be capable of 
exploiting high-throughput 
capabilities

• They must be dynamic and 
account for evolution in the 
problem definition itself

7

2

3 1

3

2

1

Precipitate
hardening

AI-Enabled Materials Discovery



Constraint-Limited Problems

• In many challenging materials 
discovery problems (e.g. fusion 
materials), much of the available 
space is infeasible
• It is very inefficient to waste 
precious resources if there is not 
certainty in feasibility of a 
candidate design point
• Better approach is to satisfy 
constraints first, optimize later



Constraint-Limited Problems

• In many challenging materials 
discovery problems (e.g. fusion 
materials), much of the available 
space is infeasible
• It is very inefficient to waste 
precious resources if there is not 
certainty in feasibility of a 
candidate design point
• Better approach is to satisfy 
constraints first, optimize later

Classify for feasibility:

Explore Design Space:

Expand the feasible region:



The Big Picture
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• Exploration/exploitation of a 
(computational) experiment 
space should not be random

• Unfortunately, each 
experiment/computation often 
times is extremely costly

• With “open loop” approaches 
there is no prescription of what 
to do next once more 
knowledge has been gained [2016 Balachandran]

http://www.nature.com/articles/srep19660
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Discovery as a (Black 
Box) Optimization
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When queries to the experimental 
design space are expensive, we 
need to do better than random 
exploration

[Brochu]

Model

Policies

Bayesian Optimization:
Prediction of Outcomes + 
Prescriptive Policies 

Bayesian Methods:

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwj90-nhj4fTAhVK7WMKHct5AboQFggjMAE&url=http://haikufactory.com/files/bayopt.pdf&usg=AFQjCNFrZ_QkOCIiQ5BkHoRNE3RbyjtGOQ&sig2=gapaZXgDHWlMsD3BLVC2Aw
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Our Current Model Select Single (or many) Experiment(s)

Typical SOA

[Azimi]

“Autonomous systems [should] build and 
exploit own internal models [and act on 
them]”—N. Freitas

Initial Data

Run Experiment(s)

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwj75vj_hofTAhWF5CYKHffJAdMQFgg2MAM&url=http://web.engr.oregonstate.edu/~doppa/pubs/bayesian-optimization.pptx&usg=AFQjCNEzitm0C7Y8oRrGVBt_RE-guHKd


Is that all there is?

Most approaches to date to autonomous materials discovery can be 
mapped to a sequential ‘black-box’ optimization problem
Such approaches tend to be limited, since:
• One has potentially multiple gray boxes, instead of a single black box
• It is generally necessary to account for multiple objectives and 

constraints simultaneously
• Sequential (one-by-one) experimentation is highly inefficient
• Incorporating physics/chemistry priors into ML/AI frameworks can 

accelerate process
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Combining Multiple Information 
Sources 
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• What if we have multiple 
information sources at 
our disposal?

• In materials science, we 
often have multiple 
sources of information at 
our disposal



Combining Multiple Information 
Sources 
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Multi-modal Learning Multi-Information Source BO

[Trask 2022]

[Khatamsaz]



Exploiting HTP Facilities
• Conventional BO:

• Makes strong assumption about shape 
and ‘roughness’ of underlying function 
(e.g. hyperparameters given sparse 
data)

• Location of optimal region(s) is highly 
dependent on these assumptions

• This is very risky when the amount of data 
is small

• Alternate Approach:
• Assume that all shapes are possible 

(‘roughness’ of the function is multi scale)
• Compute acquisition function for many

possible hyperparameters at the same 
time

T. T. Joy, S. Rana, S. Gupta, and S. Venkatesh, “Batch Bayesian 
optimization using multi-scale search,” Knowledge-Based Systems, 
Jun. 2019, doi: 10.1016/j.knosys.2019.06.026.

https://doi.org/10.1016/j.knosys.2019.06.026


Dealing with Multiple 
Objectives and Constraints
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SOA in Alloy Design

[Arroyave 2023]

Karaman 2023]
[Arroyave, Allaire, Karaman 2023]



SOA Alloy Design
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Example: Application of BIRDSHOT to ULTIMATE
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Where do we move from here?



Add Physics/Chemistry to BO

21

Standard BO uses off-the-shelf 
kernel functions that assume a 
Euclidean space
This may not be the best 
representation of the problem
It may also lead to unsafe design 
choices
A solution could be to inject 
physics/chemistry priors into the 
kernel function itself
In ChemBO, for example, the 
kernel was constructed over the 
molecular graph space

[Korovina 2020]

http://proceedings.mlr.press/v108/korovina20a.html


Add Physics/Chemistry to BO
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Add PSP Relationships to 
BO
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• Example: we have compared 
microstructure-agnostic BO vs 
microstructure-aware BO

• Our results have shown that explicitly 
exploiting PSP relationships leads to faster 
solutions than when only exploiting PP

[Khatamsaz 2022]
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Accelerate Physics-based Models

[Castin 2018 CMS]

• Physics-based models are 
expensive

• They can be accelerated 
using ML

• There are many examples 
relevant to fusion/fission:

• ML Potentials
• ML Accelerated MD
• ML Accelerated KMC
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Augment Data-only models with Priors

[Vela 2023]
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Accelerate Physics-based Models

[Roy 2022]

• Physics-based models are 
expensive

• They can be accelerated 
using ML

• There are many examples 
relevant to fusion/fission:

• ML Potentials
• ML Accelerated MD
• ML Accelerated KMC
• Physics Informed NNs
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Develop Integrated 
Synthesis/Characterization/Testing Platforms

[Karaman 2023]
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Develop Accelerated HTP Irradiation Tests

[Shao 2022]

Multiple (kinds of) radiations
Multiple temperatures
Multiple energies
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Design Samples for HTP Characterization

[Radovic 2022]

Example: HTP Oxidation
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Develop Fast Methods to Assess Long-
evolving Properties

[Stinville 2022]

High Cycle Fatigue resistance assessment after one 
cycle



31

Blue-Sky: Develop Integrated Cyber-Physical Platforms

[Haase, 2019]

Self-driven Laboratories: In practice: 
Decision-Making 
Algorithm* + Robotics

*Given their data-efficiency, most algorithmic decision support is based on 
Bayesian Optimization (BO) approaches

https://www.sciencedirect.com/science/article/pii/S258959741930019X
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My own (naïve) thoughts
1. What promising AI / ML architectures can be used for rapid discovery of new fusion materials? How might 

these work with material computational modeling tools? What are the pros and cons of these 
approaches?

• BO-based approaches, Physics—Informed ML Inference and Acceleration
2. Without considering economics, how confident are you that we can use ML/AI to find a better performing 

alloy to serve as PFC (plasma facing component) material to replace the current leading candidates (e.g., 
RAFM, W, V4Cr4Ti)? 

• I am (mildly) confident that there may be better options than current candidates
3. Which of the following properties in Table 1.1., if any, do you believe is infeasible to optimize based on 

current ML/AI tools for material discovery, and why?  
• % elongation at fracture, swelling, creep, fatigue will be extremely challenging to design for

4. Can you name any additional material properties that should be optimized to make an impact for 
commercial FPPs? What are the relevant ranges of those properties? What tests do you need to validate 
these properties? –No idea

5. Is it feasible for current ML/AL tools to automatically generate new material specifications for existing 
manufacturers to fabricate commercial fusion components?  If not, what is missing? 

• To make this possible, we must consider co-design (materials and process)
6. What other opportunities/challenges/issues at code and simulation level for rapid material design should 

we consider? 
• Orders of magnitude acceleration (diffusive times at atomic scales)
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Final Remarks

• Alloy discovery occurs in the sparse data 
regime (this is NOT a big data problem)

• From our experience, iterative alloy discovery 
loops with multiple objectives and 
constraints with de-localized resources have a 
discovery rate ~20 alloys/month

• Deployment of BO itself can be quite 
expensive, requiring supercomputing power 
(~1000 cores for 3 days per iteration)

• Integrated synthesis-processing-
characterization-testing platforms may 
accelerate discovery rate (~20 alloys/week?)

• Rate of discovery is limited by slowest task in 
discovery loop

• Further advantages arise when using physics-
informed ML

• Ideally, we want cyber-physical platforms, 
with experimental platforms coupled with 
dedicated supercomputing resources
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Thanks!


