The ARPA-e Benchmark Algorithm

Carleton Coffrin
Advanced Network Science Initiative
https://lanl-ansi.github.io/
Power Systems Optimization Foundation

- Staff Scientists at Los Alamos National Laboratory
 - Advanced Network Science Initiative
Power Systems Optimization Foundation

- Staff Scientists at Los Alamos National Laboratory
 - Advanced Network Science Initiative

- AC Optimal Power Flow
 - Convex Power Flow Relaxations (QC formulation)
 - Power Flow Approximations (LPAC formulation)
 - In collaboration with Pascal Van Hentenryck and Hassan Hijazi
Power Systems Optimization Foundation

• Staff Scientists at Los Alamos National Laboratory
 • Advanced Network Science Initiative

• AC Optimal Power Flow
 • Convex Power Flow Relaxations (QC formulation)
 • Power Flow Approximations (LPAC formulation)
 • In collaboration with Pascal Van Hentenryck and Hassan Hijazi

• OPF Benchmarking
 • Highlighted significant problems with open-test cases
 • IEEE Task Force on Benchmarks for Optimization Algorithms
 • Power Grid Library Benchmarks (PGLib)
Open-Source Optimization Software

- PowerModels.jl
 - Tool for Research in Power System Optimization
 - Read Matpower and PSSE files
 - State-of-the-art AC-OPF Solutions
 - Convex Relaxations (SOC, QC, SDP, ...)
 - Optimization Based Bound Tightening
 - ...

julia

scientific computing made easy

mathematical optimization in Julia
Open-Source Optimization Software

- **PowerModels.jl**
 - Tool for Research in Power System Optimization
 - Read Matpower and PSSE files
 - State-of-the-art AC-OPF Solutions
 - Convex Relaxations (SOC, QC, SDP, …)
 - Optimization Based Bound Tightening
 - …
Open-Source Optimization Software

- PowerModels.jl
 - Tool for Research in Power System Optimization
 - Read Matpower and PSSE files
 - State-of-the-art AC-OPF Solutions
 - Convex Relaxations (SOC, QC, SDP, …)
 - Optimization Based Bound Tightening
 - …

Add SCOPF to the PowerModels Toolbox!
My Roles in the Competition
My Roles in the Competition

• Dataset Validation and Ranking
 • Look for problems in the datasets
 • Check that problems are not “too easy”
 • Attempt to rank scenarios based on hardness
My Roles in the Competition

• Dataset Validation and Ranking
 • Look for problems in the datasets
 • Check that problems are not “too easy”
 • Attempt to rank scenarios based on hardness

• Develop the “APRA-e Benchmark” Algorithm
 • Test drive the evaluation platform
 • Compare and contrast different solution approaches
Data Validation Example

Public Network Data

Competition Synthetic Network Data

AC–OPF Strict Generation vs Objective Cost

- pglib (n=130)
- goc–o (n=772)
- goc–r (n=773)

Objective Cost (log, $/mw/h)

Generation (log, mw)

- ieee
- rte
- pegase
- grid data
- other
Data Validation Example

Public Network Data

Competition Synthetic Network Data

AC–OPF Strict Generation vs Objective Cost

Objective Cost (log, $/mwh)

Generation (log, mw)
AC–OPF Strict Generation vs Objective Cost

Objective Cost (log, $/mw/h)

Generation (log, mw)

- goc-o (n=772)
- goc-r (n=773)
- pglib (n=130)
- iee
- rte
- pegase
- grid data
- other

Public Network Data

Competition Synthetic Network Data
The Benchmark Algorithm
Basics of the ARPA-e Benchmark Algorithm

Initial Operating Point (DC-OPF)
Basics of the ARPA-e Benchmark Algorithm

- Initial Operating Point (DC-OPF)

 - Check Contingencies (DC-PF)

 parallel workers (72 in competition)
Basics of the ARPA-e Benchmark Algorithm

Initial Operating Point (DC-OPF)

Check Contingencies (DC-PF)

violations (ptdf cuts)

Secure Operating Point (e.g. DC-SCOPF)

parallel workers (72 in competition)
Basics of the ARPA-e Benchmark Algorithm

- **Initial Operating Point (DC-OPF)**
 - parallel workers (72 in competition)
 - Check Contingencies (DC-PF)
 - violations (ptdf cuts)

- **Secure Operating Point (e.g. DC-SCOPF)**
Basics of the ARPA-e Benchmark Algorithm

- Initial Operating Point (DC-OPF)
- Check Contingencies (DC-PF)
- Secure Operating Point (e.g. DC-SCOPF)
- AC-Crossover Solver

Flow:
- Initial Operating Point to Check Contingencies with violations (ptdf cuts) to Secure Operating Point
- Secure Operating Point feeds back to Check Contingencies with no violations
- Parallel workers (72 in competition)
Basics of the ARPA-e Benchmark Algorithm

Initial Operating Point (DC-OPF) → Check Contingencies (DC-PF) → Secure Operating Point (e.g. DC-SCOPF)

- violations (ptdf cuts)
- no violations

parallel workers (72 in competition)

AC Contingency Solvers (i.e. code2) → AC-Crossover Solver
Basics of the ARPA-e Benchmark Algorithm

- Initial Operating Point (DC-OPF)
- Check Contingencies (DC-PF)
- Secure Operating Point (e.g. DC-SCOPF)
- AC-Crossover Solver

Notable Engineering Details (see poster session)

- parallel workers (72 in competition)
- violations (ptdf cuts)
- no violations

AC Contingency Solvers (i.e. code2)
The ARPA-e Benchmark Algorithm Source Code
The ARPA-e Benchmark Algorithm Source Code
The ARPA-e Benchmark Algorithm Source Code

https://github.com/lanl-ansi/PowerModelsSecurityConstrained.jl
PowerModels with Security Constraints

• Solve Grid Optimization Competition Challenge 1 Problems (v0.1)
 • Fully open-source with solvers like Ipopt, Cbc (zero licenses, easy for HPC)
 • Easy to use with faster commercial solvers (e.g. Gurobi)
PowerModels with Security Constraints

• Solve Grid Optimization Competition Challenge 1 Problems (v0.1)
 • Fully open-source with solvers like Ipopt, Cbc (zero licenses, easy for HPC)
 • Easy to use with faster commercial solvers (e.g. Gurobi)

• Broad Goals
 • a foundation for SCOPF research (e.g. the “Matpower” of SCOPF)
 • optimization with contingency constraints
PowerModels with Security Constraints

• Solve Grid Optimization Competition Challenge 1 Problems (v0.1)
 • Fully open-source with solvers like Ipopt, Cbc (zero licenses, easy for HPC)
 • Easy to use with faster commercial solvers (e.g. Gurobi)

• Broad Goals
 • a foundation for SCOPF research (e.g. the “Matpower” of SCOPF)
 • optimization with contingency constraints

• More problems on the way, e.g. SCED and SCUC…
Two Concluding Thoughts
Looking back to the 2014 ARPA-e OPF Algorithms Workshop
Optimization Super Heroes

An All-Star Cast!
Thanks!