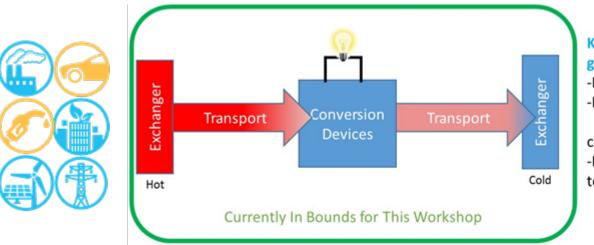
Today: Tech I Breakout


Lower Grade Waste Heat Recovery Workshop

CHANGING WHAT'S POSSIBLE

December 13-14, 2016 Hilton San Francisco Union Square 333 O'Farrell St, San Francisco, CA 94102

Time	Event
9:00 – 11:00 AM	Individual meetings with Dr. Joseph King and his technical team
	Registration and Lunch
1:45 AM - 12:00 PM	Welcome and Introduction to ARPA-E Dr. Ellen Williams, Director, ARPA-E
12:00 - 12:20 PM	Lower Grade Waste Heat Recovery – Goals, Opportunities and Areas of Interest Dr. Joseph King, Program Director ARPA-E
12:20 – 12:50 PM	Workshop participant introductions
12:50 – 1:15 PM	Thermomagnetics and Multiferroics Guest Speaker: Prof. Bharat Jalan, University of Minnesota
1:15 – 1:40 PM	Rectennas Guest Speaker: Dr. Patrick Brady, <u>Redwave</u> Energy
1:40 - 2:05 PM	Thermoacoustics Guest Speaker: Prof. Robert Keolian, Pennsylvania State University
2:05 – 2:30 PM	Metamaterials and Material Synthesis Guest Speaker: Dr. Augustine Urbas, Air Force Research Laboratory
2:30 - 2:40 PM	Breakout 1 Overview Dr. Joseph King, ARPA-E
2:40 - 3:00 PM	Break/Networking
3:00 – 5:00 PM	Breakout Session 1
5:00 PM	Informal Networking/Dinner – Organize on Your Own
5:30 – 8:00 PM	Individual meetings with Dr. Joseph King and his technical team

Breakout Session Goals - Identify and Capture

Keep Focused on "Lower"grade Waste Heat: -Discuss Thermal Interfaces -Discuss Transport, rejection, and concentration methodologies -Discuss novel Temperature to Energy conversion devices

- 1. What is the current state-of-the-art?
- 2. What are the three biggest performance limitations in the field?
- 3. If solved, what would be the biggest break though or quantum leap forward for this technology?
- 4. Are there challenging but reasonable approaches to address the limitations?
- 5. What is the biggest opportunity/application for this technology were the limitations to be surmounted?

Seed Questions By Area

			0	0	0	•			
Multiferroics & Thermomagnetics:									
- Tend to be metal or mixed (bi)metal oxides									
- Materials that are both ferroelectric & multiferroic are rare									
- Ultrafast switching in the pico – attosecond scale range									
- Non-equilibrium dynamics governed using resonance									
(e.g. switching)									

- Spintronic devices with electric field tunable functions

 Q_1 : Can the thermomagnetic effect be used to enhance a traditional thermoelectric device such as its ZT?

 Q_2 : Can ferroelectric or multiferroic techniques^{*} be used to enhance conduction (electron mobility) or limit phonon transport in thermoelectric devices?

 Q_3 : What ferroelectric driving mechanism must be present for electric *and* magnetic ferroic order to occur simultaneously; what materials and structures would have this? What are the challenges to do this?

 Q_4 : Can one fabricate a terahertz to femtosecond range magnetoelectric multiferroic which might act as a diode; the direct control of spin waves with terahertz (IR) radiation?

*magnetically driven multiferroics are mostly insulating bimetallic oxides.

Seed Questions By Area

Postonnoo:							
Rectennas:							
- Specific frequency/wavelength range							
- Coherence constraints (out of phase cancellation)							
- Switching frequency of diode limited (IR: ~30THz)							
- Diode-antenna resistance matching							
- Design Constraints							
- Potentially very high efficient (> 44%)							

Q₁: What are the challenges to capturing a broader spectral absorption band efficiently? Are there designs, concentrators or other technologies which would might do this effectively?

 Q_2 : Are there designs or materials which would allow faster diode switching with no loss of rectification or resistance (impedance) matching?

 Q_3 : Where in the waste heat (IR) spectral range does a rectenna have the highest probability of effective operation?

 Q_4 : Does an infrared rectenna follow a Maxwellian view of electromagnetic radiation and rectification or a Bose-Einstein view?

Seed Questions

			0	0		•		
Thermoacoustics:								
- Low Power to volume ratio								
 Very high density fluids required to reach high power densities Acoustic waves at high pressure ratios suffer many non-linearities 								
- e.g. turbulence and harmonic generation/distortion								
- Linear alternators (energy convertor) have relatively low efficiency								
 Heat exchange process in oscillating media is problematic 								

 Q_1 : Are there effective methods to manage the harmonic distortion to amplify the desired fundamental mode? Q_2 : Are there consistent, efficient ways to match (by design) the pressure wave frequency to the resonance frequency required by the load device?

 Q_3 : Are there flexible designs which match the resultant variation of wave frequency with device operating temperature?

 Q_4 : Are there designs/methods which can effectively manage the stack temperature gradient between the hot and cold-side heat exchangers, particularly below 250-500°C?

