

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

ARPA-E HVAC-DAC WORKSHOP

BTO: HVAC and Direct Air Capture (DAC)

Antonio M Bouza

Technology Manager

U.S. DOE Building Technologies Office

February 28, 2023

DOE Goals and Research Strategy

We Have a Clear Directive: Put the U.S. on an irreversible pathway to achieve a carbonfree electricity sector by 2035 and a 100% clean energy economy by 2050

At the same time, we will:

- Improve affordability, resilience and performance of buildings
- Provide workforce training and support creation of good-paying, quality clean energy jobs
- Advance diversity, equity, and inclusion in STEM
- Ensure overall benefits of investments are delivered to disadvantaged communities

Removing Carbon, Advanced Filtration Task

- BTO seeks to accelerate the development of next generation heating of HVAC systems with direct air capture capabilities
- Removing carbon is an advanced filtration task
- Two main air sources to remove carbon (CO2) from inside or outside air
- DAC components *can not be parasitic*
- HVAC systems in the US will need to be able to meet current and future minimum HVAC efficiency standards

HVAC, and Water Heating R&D

HVAC Research Strategy

- Enable and support the transition to heat pumping technologies
- Both emissions are critical
- Direct Emissions
 - Refrigerants
 - Reducing leaks
 - DAC technology
- Indirect Emissions
 - Efficiency
 - DAC impacts, positive

2010 Global GHG Emissions from Air Conditioning

Timeline...

Timeline

	-10 years	-5 years	+5 years	+10 years
Regional HVAC solutions	Cold Climate Heat Pumps (CCHP), electrification	CCHP, electrification	 Hot, Humid and Mixed, SSLC Commercialization, CCHP 	 Hot, Humid and Mixed, SSLC Commercialization, RTU CCHP and SSLC
Refrigerant R&D	 Modelling Non-blends Low-GWP alternative 	 Low-GWP alternative Transcritical CO₂ supermarket refrigeration Alternatives for R-22 and R-410A Flammable refrigerants, A2L/A3 	 Low-GWP alternative Alternatives for R- 410A Flammable refrigerants, A2L/A3 & sensors Advanced compressors SSLC 	 Commercialization, A2L systems Low-GWP alternative Advanced compressors SSLC, hybrid Advanced compressors
Crosscutting technologies	• Heat Exchanger (HX)	 Heat exchanger research Motors Materials Joining Technologies Energy Storage 	 Commercialization, one technology HX: Low GWP, and NVC New materials, CABLE Energy Storage 	 HX: Low GWP and NVC New materials Energy Storage Advanced compressors, hybrid

Timeline

	-10 years	-5 years	+5 years	+10 years
Integrated Heat Pump (IHP)	 Modeling Updating HP design model 	 Air Source (AS) and Ground Source (GS): 40% to 55% savings Natural Gas Developed Standard Method of Test (MOT) 	 Cold Climate Heat Pump version ABC focus Hot, Humid and Mixed 	 Commercialization Low-GWP alternative Hot, Humid and Mixed, SSLC HVAC-DAC
HVAC and Direct Air Capture (DAC)		 Energy Savings Potential and RD&D Opportunities for Commercial Building HVAC Systems Report Advanced filtration 	 Metrics R&D efforts Integrated Solutions Part of Separate Sensible and Latent Cooling (SSLC) HP systems 	Commercialization, HVAC-DAC systems

EIA projects... Space cooling increases

Population-weighted heating and cooling degree days – National average AEO2021 Reference Case

- Demand for space cooling will rise and demand for space heating will fall
- Heating demand is projected to remain higher than cooling

Heat Pumps and AC units: Cycle

http://www.heatpumpcentre.org/en/aboutheatpumps/howHPworks/Sidor/default.aspx

- Technology relies on a vapor compression cycle that puts a refrigerant through a phase change
- HVAC-DAC technology can be integrated, potentially into the condenser

Integrated Heat Pump (IHP) Technologies

- Energy cascading is the process of using the waste (or residual) heat from one process as the energy source for another
- Concept is to merge several end-use together, generate a new solution, coupling things together
- Good example exists today from BTO's integrated heat pump work where the waste heat from the AC is used to heat water for free with energy saving potentials approaching 50% when HVAC and water heating is coupled
- Desuperheater can be used to transfers excess/waste heat generated from a vaporcompression cycle for heat watering or other uses
- IHP technologies can be expanded to HVAC-DAC applications

ClimateMaster

- Space conditioning, water heating, dehumidification, and ventilation
- Trilogy 45 Q-Mode[™] could save about 60% of annual energy use and cost for space conditioning and water heating in residential applications
- 30% more efficient than any other available ground-source heat pump
- Broke the 45 EER Barrier in the USA
- 80% reduction in electricity use
- Award Winning

National Academies: Baselines, DAC systems

- Plant capture rate from air = 1 Mt/y CO2
- Plant life = 10 years
- Concentration in air = 400 ppmv CO2
- Volumetric flow rate \geq 58,000 m3/s air
- Capture fraction from air \geq 60+ CO2
- Concentration of product \geq 98 percent CO2
- Emission factors
 - Heat from natural gas = 227 g CO2/kWh
 - Heat from coal = 334 g CO2/kWh
 - Heat from nuclear = 4 gCO2/kWh
 - Heat from solar = 8.3 gCO2/kWh
 - Electricity from grid (U.S. average) = 743 gCO2/kWh
 - Electricity from natural gas = 450 gCO2/kWh
 - Electricity from coal = 950 gCO2/kWh
 - Electricity from nuclear = 12 gCO2/kWh
 - Electricity from solar = 25 gCO2/kWh
 - Electricity from wind = 11 gCO2/kWh

Most approaches rely on heating or a combination of heat and vacuum to release captured CO2 from its bound state. HVAC-DAC systems have the potential to use waste heat, low emission factor.

National Academies of Sciences, Engineering, and Medicine (2018), "Negative emissions technologies and reliable sequestration: a research agenda."

Heat Pump (Cooling Mode), Typical System

Direct air capture uses a chemical reactions to pull carbon dioxide out of air.

Thermal Energy Needs to release: 176-248F (Solid Sorbent) or ~1652F (Liquid Solvent)

Heat Pump (Cooling Mode), System Integration Indoor Air (Advanced Filtration Task)

Heat Pump (Cooling Mode), System Integration Outdoor Air (Non-Filtration)

BTO SBIR (C56-10): Decarbonizing Buildings, HVAC Direct Air Capture (DAC) systems

Objective/ Goal	Metric	Target	Stretch Target	Baseline Performance
Payback period, cost effectiveness	years	≤ 5 years	≤ 3 years	Applicant Defined
Energy efficiency improvements, HVAC	СОР	5%, increase	15%, increase	Applicant Defined
Size and/or weight increases relative to today's current state of the art units. Volume important for system on the ground and weight critical for roof-based systems.	Volume (ft ³ , m ³) or Weight (lbs., kg)	<50%, increase in volume and/or weight	<30%, increase in volume and/or weight	Applicant Defined
Carbon Capture metric	tCO ₂ /year	1.5 * rated system AC tonnage	2.0 * rated system AC tonnage	Applicant Defined
Lifetime	years	≥ 12	≥ 15	Applicant Defined
Service to maintain as-new performance	Yes/No	Little to no increase as compared to state-of-the-art HVAC design		Applicant Defined

Thank You

Antonio M Bouza

Technology Manager, HVAC & Water Heating R&D U.S. Department of Energy, Energy Efficiency & Renewable Energy Building Technologies Office *antonio.bouza@ee.doe.gov*

Heat Pumps \rightarrow Happy People \rightarrow Happy Planet

Backup Slides

EIA: Cooling degree days by census division

Cooling degree days by census division in 2021

Data source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.10, June 2022 Note: Population-weighted degree days. Pacific division includes Alaska and Hawaii.

AS-Integrated Heat Pump (IHP) Technologies

Fig. 6. Total Energy Saving Percentages in 10 US Cities.

Table 1	rig. 6. Total Energy saving recentages in 10 05 ch
Building Energy Simulation Results of Asirir versus a paseine near run	np with Electric water rieating.

City		Atlanta	Baltimore	Chicago	Houston	Las Vegas	Los Angeles	Miami	Phoenix	San Francisco	Seattle
State		GA	MD	IL	TX	NV	CA	FL	AZ	CA	WA
Baseline	Total SC Delivery [kWh]	12617	9020	6438	27007	21111	1318	45187	31339	385	633
	Total WH Delivery [kWh]	15737	17311	18692	13735	13980	15349	11658	12541	17062	18129
	Total SH Delivery [kWh]	737	1356	3865	197	251	93	11	158	197	230
	Total Delivery [kWh]	29091	27687	28995	40939	35342	16761	56857	44038	17644	18993
	Total Energy Consumption [kWh]	18936	20176	23060	19461	20477	15678	20739	21796	17223	18393
	Total Electric COP [W/W]	1.5	1.4	1.3	2.1	1.7	1.1	2.7	2.0	1.0	1.0
	Total SC Delivery [kWh]	11807	8482	6305	24143	19452	2694	40666	28096	766	1236
	Total WH Delivery [kWh]	15957	17473	18843	13900	14144	15516	11822	12704	17230	18301
	Total SH Delivery [kWh]	741	1362	3877	197	250	92	11	153	195	230
	Total Delivery [kWh]	28505	27318	29025	38241	33846	18302	52499	40953	18191	19768
	Total Energy Consumption [kWh]	7864	9000	12116	8817	9565	5648	10551	10739	6397	7148
	Total Electric COP [W/W]	3.6	3.0	2.4	4.3	3.5	3.2	5.0	3.8	2.8	2.8
Total Energy Saving Percentage (ASIHP vs. baseline)		58%	55%	47%	55%	53%	64%	49%	51%	63%	61%

Source: Energy and Buildings 156 (2017) 197–206, ORNL work