ADVANCED MANUFACTURING SERVICES

ADDITIVE METAL

GENSETS Kickoff Meeting

Andrew Carter | Manufacturing/Process Engineer

Oct. 21, 2015
Who We Are

Technologies & Services

Additive Metals

How Rapid Manufacturing Can Help You
About Stratasys Direct Manufacturing

Stratasys Direct Manufacturing is one of the largest providers of additive and conventional manufacturing solutions:

- 8 U.S. manufacturing facilities
- 12 manufacturing technologies
- 600+ employees
- Certifications: ISO 9001, AS9100
- ITAR registered
Manufacturing Facilities

- Valencia, CA
- Poway, CA
- Tucson, AZ
- Phoenix, AZ
- Eden Prairie, MN
- Austin, TX
- Belton, TX
- Troy, MI
Your Team

Our experienced team of project engineers is committed to your success with:

• Design support for advanced manufacturing
• Technical direction and recommendations
• Material, technology and build optimization for quality, speed and reduced cost
We are committed to providing high quality parts and prototypes. Each part undergoes quality inspections during the incoming, in-process and final production. We have the ability to test both destructively and non-destructively, as well as the ability to perform AS9102 FAI’s utilizing CMM technology.
Who We Are
Technologies & Services
Additive Metals At Stratasys Direct
How Rapid Manufacturing Can Help You
Technologies

ADDITIVE
- POLYJET
- SL
- FDM
- LS
- DMLS

CONVENTIONAL
- CNC
- URETHANE CASTING
- TOOLING
- INJECTION MOLDING
Product Development Cycle

CONVENTIONAL

ADDITIVE

Concepts

Design & Engineering

Prototype

Low Volume Production

Full Scale Production

URETHANE CASTING

CNC MACHINING

DMLS

CONCEPTS

DESIGN & ENGINEERING

PROTOTYPE

LOW VOLUME PRODUCTION

FULL SCALE PRODUCTION
Who We Are
Technologies & Services
Additive Metals
How Rapid Manufacturing Can Help You
Laser Based Metal Powder Bed Fusion

An additive process.

It builds parts by consecutively distributing fine layers of powder metal and selectively melting regions defined by a 2D slice of a 3D CAD model.

- Laser Based Powder Bed Fusion Processes:
 - *Direct Metal Laser Sintering, DMLS* - EOS
 - *LaserCusing* - Concept Laser
 - *Selective Laser Melting* - SLM
DMLS M280 Platform.

250x250x280mm Build Volume ● 400W Fiber Laser ● N or Ar – Environment
Builds with 20μm to 100 μm layers ● Smallest Features = 0.012”
Smallest Hole Diameter = 0.035” ● Standard Tolerance = ± 0.005”
Deposition rates of = 1in³ per 2.5hrs
Stratasys Direct Manufacturing
Machine Fleet and Department Structure

Two Facilities located in: Austin, TX and Belton, TX

Fourteen Laser Based Metal Powder Bed Machines.
 8 M280’s & 1 M270 in Austin, TX
 4 M280’s and 1 M290 in Belton, TX

Eight Different Materials

Department Positions
 Programmers, Finishers, Machinist, Technician, Application & Manufacturing Engineers.

Post AMM Support
 CNC Mill, CNC Lathe, Wire EDM, Wire Drill, 3 axis mill, lathe, surface grinder, Stress-relief kiln, down draft tables, and shot peen blast cabinets

Inspection Equipment
 Metallographic Polisher & Microscope, Profilometer, CMM.
 X-ray, CT scan, FPI, SEM, Mechanical Testing
DMLS Applications

- Complex turbine components
- Conformal cooling channels
- High-temperature housings
- Complex tools/instruments
- Medical and dental implants
Additive Alloys

Feedstock = Argon gas atomized powder.

Current Offering

SS 17-4 PH*, SS316L
IN 625*, IN 718*,
IN718 API-std, CoCr
AlSi10Mg, Ti 6-4 Gd5*,

Material Process Development

Al6061, Monel K500,
Invar36, IN939, C18150

Powder chemistry ordered to meet respective AMS standards.

Projects slated for Q4 2015
Process Optimization

EOS Parameter Editor
Opens up over 100 laser, scan, and machine settings.

Proprietary Scan Settings developed in house.
Developed for maximum density, improved surface finish, & reduced build time.
Material Properties

Tensile properties are near equivalent to **conventional wrought** properties.

Homogized mechanical properties following heat treatments.

Material density is ~99.5% (or 0.5% porous)
Process Control & Performance Metrics

Part and Power Weight out of Machine

DMLS Material Utilization

Track material usage and identify unnecessary waste.

Track material utilization for production machines.
Material Composition and Degradation
- Addressing the industry wide question.

Material Property Study - Insight into Powder Life Cycle

Tensile and Microstructure

Industry claims powder degrades with time and exposure.
Companies are forming around the fear
Customer’s specs call for no part to be built with any powder older than 90 days.

SDM’s answer:
- 7 machines building the same material undergoing the same material refresh rate
- 2 tensile bars and 1 metallographic coupon positioned per plate
- over 40 builds/machine

Material properties trended against Blend Composition will answer industry’s question of powder degradation.
Design Guidelines – General Rules of Thumb

- **Angled Surfaces**

 <30deg surfaces will requires supports

- **Horizontal Holes**

 1-5 mm will build fairly uniform

 6-9mm will be out of round

 >9mm will requires support structures.

- **Eliminate Trapped Supports**

 Include fillets and chamfers when possible.
Who We Are

Technologies & Services

Additive Metals

How Rapid Manufacturing Can Help You
Added Additive Benefit

- Part/assembly consolidation
- Supply chain management
- Design freedom & Design iteration

- Manufacturing lead time savings
- Performance improvements
Offer a Variety of High Temperature Super Alloys

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Melt Temp</th>
<th>Ultimate Tensile Strength (ksi)</th>
<th>Recommended Heat Treatments*</th>
<th>Wear-Resistance, Corrosion Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN625</td>
<td>1350°C/2460°F</td>
<td>128</td>
<td>SR, HIP, SHT</td>
<td>High</td>
</tr>
<tr>
<td>IN718</td>
<td>1280°C/2336°F</td>
<td>198</td>
<td>SR, HIP, SHT, PHT</td>
<td>High</td>
</tr>
<tr>
<td>CoCr</td>
<td>1500°C/2730°F</td>
<td>140</td>
<td>SR, HIP, SHT, PHT</td>
<td>High</td>
</tr>
</tbody>
</table>

*SR = Stress Relief, HIP = Hot Isostatic Press, SHT = Solution Heat Treat, PHT = Precipitation Heat Treat

An experienced application development team

Do you have a specific alloy in mind?

Stratasys Direct will diversify material portfolio for their customers.

Duration: A 2 Phase, 4 - 5 Months;

Phase 1:
1.1 Procure 100kgs of Ar gas atomized powder +15um-45um powder.
1.2 Powder and Chemical Characterization *(pre and post build)*
1.3 Initial Energy Flux DOE

Phase 2:
2.1 Surface roughness DOE
2.2 Powder Degradation Study *(5 to 10 consecutive build study)*
2.3 Mechanical Coupons *(tensile, impact, fatigue)*
2.4 Thermal Condition Study *(mechanical, metallographic)*

Active Programs: Monel K500, Al6061
Funded Programs: Invar 36, C18150
SDM Differentiating Points to Remember

SDM’s 25 years experience originates in Rapid Prototyping and Rapid Manufacturing in Additive Processes including: SL, LS, FDM, PolyJet.

SDM separates our business from the competition by relying and applying this material and process knowledge to laser based metal powder bed fusion process.
STRATASYS IS THE TRUSTED LEADER IN INNOVATIVE 3D PRINTING AND MANUFACTURING SOLUTIONS THAT EMPOWER INDIVIDUALS AND ORGANIZATIONS TO TRANSFORM THE WAY THEY IMAGINE, DESIGN AND MAKE THINGS.