Internal Combustion Engines for Hybrid Electric Configurations

Jim Szybist, Robert Wagner and Scott Curran

National Transportation Research Center Oak Ridge National Laboratory

ARPA-E High Efficiency Hybrid Vehicles Workshop Southfield, MI October 12, 2017

ORNL is managed by UT-Battelle for the US Department of Energy

Hybridization of Light Duty Vehicles Changes Engine Requirements. Presents Opportunities and Challenges

National Laboratory

ICE Hybridization Strategy will Dictate Engine Requirements. OEMs make Decisions for Each Vehicle Platform, Portfolio will Likely Span Full Spectrum.

For Conventional Vehicle or Low Degree of Hybridization, Engine is Required to Follow Load Demand of Vehicle Part-Load Efficiency is of Primary Importance

Since light duty vehicle drive cycles are primarily at light engine loads, Engine 2 will likely lead to higher fuel economy despite lower peak efficiency

ICE Hybridization Strategy will Dictate Engine Requirements. OEMs make Decisions for Each Vehicle Platform, Portfolio will Likely Span Full Spectrum.

For Higher Degree of Hybridization, Engine Shutoff at Lightest Loads and Operating Points Shifted to Higher Load Conditions Peak Engine Efficiency Increases in Importance

Shifting engine duty cycle toward higher loads reduces the importance of light load efficiency. Best engine for hybrid application is determined on a case-by-case basis.

ICE Hybridization Strategy will Dictate Engine Requirements. OEMs make Decisions for Each Vehicle Platform, Portfolio will Likely Span Full Spectrum.

7 ORNL_ARPA-E_10/12/17

For Decoupled Hybrid, Engine Meets Average Power and Does Not Follow Vehicle Load Engine Operates Near Peak Efficiency while Charging Batteries, Otherwise Shut Off

Peak efficiency is of primary importance with decoupled powertrain. Engine 1 will result in superior vehicle efficiency.

Light Duty Engine Technology Options for Hybrid Electric Vehicles

Stoichiometric SI

Benefits:

- Mature emissions controls
- Low cost engine and emission control components
- Consumer acceptance (97% of LD energy consumption)

Challenges:

• Low efficiency?????

Lean SI

<u>Benefits</u>:

- Efficiency improvement over stoichiometric SI
- Low cost engine

Challenges:

- Lean emission control
- Consumer acceptance

Diesel

Benefits:

- *High efficiency technology*
- Established emissions controls

Challenges:

- Higher cost for engine and emission controls
- Consumer acceptance (low conventional diesel penetration)

Advanced Compression Ignition (ACI)

Benefits:

• Potential for high efficiency

Challenges:

- Emission control technology undefined
- Engine and emission control technology costs
- Consumer acceptance for new technology

Light Duty Engine Technology Options for Hybrid Electric Vehicles

Stoichiometric SI

Benefits:

- Mature emissions controls
- Low cost engine and emission control components
- Consumer acceptance (97% of LD energy consumption)

Challenges:

• Low efficiency?????

Le	a	n	SI

Benefits:

- Efficiency improvement over stoichiometric SI
- Low cost engine

Challenges:

- Lean emission control
- Consumer acceptance

Diesel

Benefits:

- High efficiency technology
- Established emissions controls

Challenges:

- Higher cost for engine and emission controls
- Consumer acceptance (low conventional diesel penetration)

Advanced Compression Ignition (ACI)

Benefits:

• Potential for high efficiency

Challenges:

- Emission control technology undefined
- Engine and emission control technology costs
- Consumer acceptance for new technology

Significant Part-Load Efficiency Increases Realized over Last 10-15 Years

Engine Load [BMEP]

CAK RIDGE National Laboratory

11 ORNL_ARPA-E_10/12/17

Significant Part-Load Efficiency Increases Realized over Last 10-15 Years

Engine Load [BMEP]

CAK RIDGE

12 ORNL_ARPA-E_10/12/17

Brake Thermal Efficiency [%]

Significant Light-Load Efficiency Increases Realized over Last 10-15 Years High Degree of Hybridization May Benefit More from High Peak Efficiency

Switching to more Knock-Resistant Fuel can Enable Large Efficiency Increase Across Entire Load Range with Modest Changes to SI Engine Technology

All data at 1500 rpm.

14 ORNL_ARPA-E_10/12/17

Switching to more Knock-Resistant Fuel can Enable Large Efficiency Increase Across Entire Load Range with Modest Changes to SI Engine Technology

Long Stroke Design Coupled with High EGR Dilution and Overexpansion Enable Higher Peak Efficiency. Low Power Density Creates Part-Load Disadvantage.

All data at 1500 rpm.

16 ORNL_ARPA-E_10/12/17

Long Stroke Design Coupled with High EGR Dilution and Overexpansion Enable Higher Peak Efficiency. Low Power Density Creates Part-Load Disadvantage.

Other High Efficiency Stoichiometric SI Engine Technology Under Development

- Honda projects 45% brake thermal efficiency with a naturally aspirated engine configuration (SAE 2015-01-1263)
 - Stroke-to-bore ratio = 1.5
 - EGR > 30%
 - High mechanical compression ratio (17:1) with over-expansion cycle
 - Low power density engine
- D-EGR from SWRI uses partial-oxidation reforming to produce hydrogen and extend EGR dilution limit (SAE 2016-01-0712)
 - Demonstrated 42% brake thermal efficiency in prototype engine
 - Nominal EGR rate fixed at 25%, high compression ratio (13.5:1)
 - Stroke-to-bore ratio = 1.22

Light Duty Engine Technology Options for Hybrid Electric Vehicles

Stoichiometric SI	Lean SI	Diesel	Advanced Compression Ignition (ACI)
Benefits:	<u>Benefits</u> :	<u>Benefits</u> :	
Mature emissions controls	• Efficiency improvement over	• High efficiency technology	Benefits:
• Low cost engine and emission	stoichiometric SI	• Established emissions controls	Potential for high efficiency
control components	 Low cost engine 	Challongos	Challenges:
• Consumer acceptance (97% of LD energy consumption)	<u>Challenges</u> :	 <u>Challenges</u>: Higher cost for engine and emission controls 	 Emission control technology undefined
Challenges:	Consumer acceptance	Consumer acceptance (low diesel	 Engine and emission control technology costs
 Engines power d Lean NO 	Lean SI Not Discussed Specifically I duce substantial efficiency benefit a typically switch to stoichiometric for ensity, little effect on peak efficiency x emission control is primary barrie	Here at light load or full-load for cy	• Consumer acceptance for new technology
19 ORNL_ARPA-E_10/12/17			National Laboratory

Light Duty Engine Technology Options for Hybrid Electric Vehicles

Stoichiometric SI

Benefits:

- Mature emissions controls
- Low cost engine and emission control components
- Consumer acceptance (97% of LD energy consumption)

Challenges:

• Low efficiency?????

Le	a	n	SI

Benefits:

- Efficiency improvement over stoichiometric SI
- Low cost engine

Challenges:

- Lean emission control
- Consumer acceptance

Diesel

Benefits:

- High efficiency technology
- Established emissions controls

Challenges:

- Higher cost for engine and emission controls
- Consumer acceptance (low conventional diesel penetration)

Advanced Compression Ignition (ACI)

Benefits:

• Potential for high efficiency

Challenges:

- Emission control technology undefined
- Engine and emission control technology costs
- Consumer acceptance for new technology

Significant Efficiency Benefits can be Realized with Diesel Over Entire Load Range. **Beneficial for Conventional Powertrain and High Degree of Hybridization.**

Light Duty Engine Technology Options for Hybrid Electric Vehicles

Stoichiometric SI

Benefits:

- Mature emissions controls
- Low cost engine and emission control components
- Consumer acceptance (97% of LD energy consumption)

Challenges:

• Low efficiency?????

Le	a	n	SI

Benefits:

- Efficiency improvement over stoichiometric SI
- Low cost engine

Challenges:

- Lean emission control
- Consumer acceptance

Diesel

Benefits:

- *High efficiency technology*
- Established emissions controls

Challenges:

- Higher cost for engine and emission controls
- Consumer acceptance (low conventional diesel penetration)

Advanced Compression Ignition (ACI)

Benefits:

• Potential for high efficiency

Challenges:

- Emission control technology undefined
- Engine and emission control technology costs
- Consumer acceptance for new technology

ACI Strategy Offers Largest Improvement in Light Load Efficiency of All Strategies. Peak Efficiency Comparable to Diesel and Emerging Stoichiometric SI Technology.

All data at 1500 rpm.

What Engine Technology will Auto Makers Incorporate Into Hybrids? It Depends.

Degree of Hybridization

- Determines what is being asked of the engine (power, torque, transients)
- Determines importance of light-load efficiency vs. peak efficiency
 - Light-load efficiency for low degree of hybridization
 - Peak efficiency for range extender application

Different Engine Technologies Provide Different Benefits

- ACI provides the highest efficiency at light operating loads
- Diesel currently provides the highest efficiency at higher engine loads
- Peak efficiency of emerging SI technologies is competitive (> 40% BTE)

Emissions

- Mature emission controls for stoichiometric SI
- Established emission controls for diesel, but higher level of scrutiny after "diesel-gate"
- ACI engines will require lean emission controls similar to diesel, but lower exhaust temperature represents challenge

<u>Cost</u>

- SI engines are the lowest cost option
- Diesel engines have higher cost (Higher cylinder pressure, complex, fuel injection equipment, emission controls)
- ACI engines are likely to have higher cost relative to SI (similar cylinder pressure and emission controls to diesel, additional engine sensors and controls required)

Thank you for your attention

Jim SzybistRobert Wagnerszybistjp@ornl.govwagnerrm@ornl.gov

Scott Curran curransj@ornl.gov

National Transportation Research Center Oak Ridge National Laboratory Oak Ridge, Tennessee U.S.A

Backup Slides

26 ORNL_ARPA-E_10/12/17

Light Duty Transportation Accounts for 71% of On-Highway Energy Consumption and is Dominated by Gasoline in the U.S.

2014 U.S. Transportation Energy Consumption

ICE Hybridization Strategy with will Dictate Engine Requirements. OEMs make Decisions for Each Vehicle Platform, Portfolio will Likely Span Full Spectrum.

