Low-cost, long-duration electrical energy storage using a CO$_2$-based Electro Thermal Energy Storage (ETES) system

Jason Miller, Echogen Power Systems

Team Members: EPRI, Liquid Ice Technologies, Louis Perry Group, Solex Thermal Sciences, TU Wien, Westinghouse

Project Vision

Delivering long-duration electrical energy storage with cost effective, environmentally friendly and intrinsically safe materials assembled into a high-tech system

<table>
<thead>
<tr>
<th>Total project cost:</th>
<th>$4.2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>30 mo.</td>
</tr>
</tbody>
</table>
The Concept

Charging

Generating

The low and high-temperature reservoirs (HTR) and heat exchangers (HTX) are the main focus of the technology development plan.

Low Temperature Reservoir
- Uses water-ice slurry as cold storage. Ice slurry generator + Shell and Tube or plate heat exchanger

High Temperature Reservoir Options:
- Heat transfer fluid (HTF) with “conventional” PCHE (economic and performance baseline)
- HTF + concrete and Printed Circuit Heat Exchanger (PCHE)
- Sand + Moving Packed Bed Heat Exchanger (MBHE)
- Sand + Fluidized-Bed Heat Exchanger (FBHE)
The Team

Echogen (EPS) - Prime contractor
Develop and commercialize large (~ 10MW+) sCO₂ power cycles

Electric Power Research Institution (EPRI)
Economic modeling, market research and voice of the customer

Liquid Ice Technologies (LIT)
Ice slurry generator design and commercialization

Louis Perry Group – A CDM Smith Company (LPG)
EPC, detailed mechanical / electrical design of sCO₂ power cycles

Solex Thermal Science (STS)
Moving bed heat exchanger (CO₂-sand)

Technische Universität Wien (TUW)
Fluidized bed heat exchanger (CO₂-sand)

Westinghouse Electric Corp (WEC)
Modular concrete-based thermal energy storage modules
Project Objectives

Y1
- Design definition, application and market studies
 - *EPS, EPRI*
- Lab-scale prototype design, fab & commission
 - *EPS, LIT*
- HTR/HTX prelim design & costing, lab-scale (100kW) and full-scale (10-100 MW)
 - *STS, TUW, WEC → LPG*

Y2
- Techno-economic analysis and optimization (full-scale, 10-100 MW, 10-100 hours)
 - *EPS, EPRI, LPG*
- System testing (HTF HTR)
 - *EPS*
- HTR/HTX final design & fab
 - *TBD*

Y3
- System testing (final HTR/HTX)
 - *EPS*

Primary program objectives:

- Demonstrate operation and control of a lab-scale CO$_2$-based ETES system
 - Designed for 0.5 kg/s CO$_2$ flow
 - 200 kW$_{th}$ of heat for 2 hours generating
 - 120 kW$_{th}$ of cooling for 2 ½ hours charging
- Develop improved HTR/HTX designs (performance and cost) and down select to most promising commercial HTR/HTX
- Design and test lab-scale HTR/HTX prototype
Challenges and Potential Partnerships

- Long-duration storage requires:
 - High round-trip efficiency, Low equipment and storage media cost

- HTR/HTX challenges
 - HTF + concrete and Printed Circuit Heat Exchanger (PCHE)
 • Performance due to intermediate HTF between storage media and CO₂
 - Sand + Moving-Bed Heat Exchanger (MBHE)
 • Cost and size of particle to CO₂ heat exchanger, parasitic loads and heat loss
 - Sand + Fluidized-Bed Heat Exchanger (FBHE)
 • Cost of installed system, heat loss and parasitic loads due to particle “fluidization”

- LTR/LTX challenges
 - Water-Ice slurry to CO₂ heat exchanger performance
 - Parasitic load requirements
 - Commercial cost

- Potential partnerships
 - End-use customers – define applicable use cases, better define commercial value proposition and applications for long-duration storage
 - OEMs & financial institutions – deployment of practical scale ETES systems will be capital-intensive, require balance sheet / commercial guarantees