Perspectives on Sustainable Transport

Lew Fulton
Director, Sustainable Transportation Energy Pathways (STEPS) Program

ARPA-E Vehicle Energy Storage Technologies Annual Program Review
March 25, 2016
To cover today

• The climate imperative – COP-21
• Challenges – Oil
• Challenges – biofuels and NG
• Challenges – electric drive vehicles
STEPS is the leading global forum of low-carbon transportation stakeholders

We generate visions of fuel and vehicle futures grounded in technical and economic realities, a strong knowledge base for companies making long-term technology investments, and sophisticated analyses of future policies.

- Modeling and analyzing alternative fuel transitions
- Preparing scientific analysis and convening policy and business decision makers
- Training next generation leaders in transportation and energy

Fuel Cell Vehicle Modeling Program
1998-2002
FCV Technology

Hydrogen Pathways
2003-2006
FCVs & H2 Fuel Pathway

STEPS
2007-2010
Fuel/Vehicle Pathway Analyses & Comparisons

NextSTEPS
2011-2014
Scenarios & Transition Strategies

STEPS3
2015-2018
Critical Transition Dynamics
We use our STEPS research framework to analyze and compare alternative fuel and vehicle transitions.

<table>
<thead>
<tr>
<th>Hydrogen</th>
<th>Biofuels</th>
<th>Electricity</th>
<th>Fossil Fuels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Cell Vehicles</td>
<td>Bio-ICE Vehicles</td>
<td>Battery-electric</td>
<td>BAU</td>
</tr>
<tr>
<td></td>
<td>2nd Gen Biofuels</td>
<td>Plug-in hybrids</td>
<td>Natural Gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low-carbon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fuels (incl. CCS)</td>
</tr>
</tbody>
</table>

Transition Dynamics
- Consumer Demand & Behavior
- Innovation & Business Strategy

Models & Analyses
- Infrastructure System Analysis
- Env./Energy/Econ. Cost Analyses
- Vehicle Technology Evaluation
- Mobility, VMT, Travel Behavior

Policy Analysis
- Market instruments
- Fuel requirements
- Sustainability standards

Integrative Scenarios & Transition Strategies
STEPS has world’s top leaders on alternative fuels, transportation, oil and gas, EVs, and scenarios modeling

Joan Ogden, Professor/STEPS Director: world’s top expert on economic assessment of fuels, esp. hydrogen

Lew Fulton, STEPS Director: leading analyst on global sustainable transport scenarios, formerly at IEA

Dan Sperling, Professor/STEPS Co-Director/ITS-Davis Founding Director: leading global expert on sustainable transportation and policy

Amy Myers Jaffe, Exec. Dir., Energy & Sustainability: leading global expert on oil and gas and sustainable energy

Andy Burke, Research Engineer: leading expert on vehicle technology evaluations, esp. batteries and supercapacitors

Sonia Yeh, Research Engineer: leading energy modeling known for innovative strategies on big data, GIS mapping and national policy

Tom Turrentine, Dir., PH&EV Research Center: consumer response to alternative vehicles, esp. PEV market
Observations on the Climate Conference (COP-21) in Paris, Dec 2015
Two degrees: mostly unburnable carbon
Outcomes from Paris COP-21

- 195 Nations signed an agreement on a new post-2020 framework with targets and mechanisms
- The 2 degree goal was retained, with much text around the need for a 1.5 degree target.
- Financing mechanisms were strengthened
- Nationally determined commitments were announced
- Adaptation/resiliency plans were strengthened

Worst acronym award:
CBDRRCILNDC - “Common But Differentiated Responsibilities and Respective Capabilities In the Light of Different National Circumstances”

- Slightly better is “INDC” – Intended Nationally Determined Contributions
The U.S. INDC

- 26-28% reduction in CO2 emissions by 2025, compared to 2005
- Commitments across sectors not specified, but key elements include:
 - Clean Power plan – 30% reduction in CO2 by 2030
 - Buildings, appliance standards
 - Transportation also expected to play a major role:
 - Fuel economy/CO2 standards for cars and trucks
 - Alternative fuel initiatives
 - Travel-related policies?
All energy-related CO₂ emissions per capita for selected countries, for 2014 and explicit or implied targets for 2030 (based on analysis conducted by climateactiontracker.org, using national INDC reports; for 2030 approximate midpoints are used where a range of targets or uncertainty in targets may exist; these are meant to be indicative and are not official numbers). Full blog describing this is located at: http://its.ucdavis.edu/blog-post/paris-climate-accord-a-strong-call-to-action-including-transportation/

Target data is based on: http://climateactiontracker.org/countries/china.html
Transportation Measures Mentioned in INDC plans

Typology of Transport Mitigation Strategies in Intended Nationally-Determined Contributions (SLOCAT, 2015)

Paris Declaration on Electro-Mobility and Climate Change & Call to Action

Released in Paris during COP21, signed by 20+ organizations including UN, auto manufacturers and NGOs (and groups representing them).

Key clauses:

With varying mandates, capabilities, and circumstances, we commit to advance our work individually as well as collectively wherever possible to increase electro-mobility to levels compatible with a less-than 2-degree pathway.... We also call on governments at all levels, businesses, cooperative initiatives, and others to commit to this Declaration, take action, and advance global momentum for electro-mobility.

According to the International Energy Agency, this transition will require... at least 20 percent of all road transport vehicles globally to be electrically driven by 2030 if warming is to be limited to 2 Degrees or less. Of this, light vehicles would primarily contribute: more than 400 Million two and three-Wheelers in 2030, Up from roughly 230 Million today; and more than 100 Million cars in 2030, Up from 1 Million today.
One global 2°C Transport Scenario

- Transport part of a global effort; electricity and hydrogen key for cars and trucks

Fulton et al, 2015, in *Biofuels, Biorefining and Bioproducts*”
CARB Scenario to Achieve 2030 & 2050 GHG Targets (-40% and -80%)

→ 90% ZEV/PHEV sales by 2050 (2/3 of on-road vehicles)
Disruptive Factors and Obstacles
2002–2015 up-end of the price cycle was mainly driven by three characteristics that no longer prevail:

• “Peak Oil” theory

• Steady, rapid Chinese “demand” based on industrial growth

• Rising upstream services costs

“Three major linchpins to high oil price psychological exuberance have dissipated“

- Amy Jaffe, UC Davis
Potential disruptors in the supply & demand balance of oil are mostly driven by population growth and economic development, new technological developments on both production and consumption, and regulatory restrictions to carbon emissions.
We’ve looked at factors outside of policies that could result in flatter oil demand trends.

• Possible stagnation of oil demand through 2035 before growth resumes.
What is available to achieve a two degree scenario?

• A very quick look at:
 – Biofuels
 – Natural gas
 – Fuel cells/hydrogen
The Rise and Fall of Biofuels in the Minds of the EIA

Projections in successive AEO’s, 2004-2014

- **Corn Ethanol**
- **Cellulosic Ethanol**
- **Biodiesel**
- **Other Biofuel**
- **Net Imports**

Projected Volumes (Billion Gallons of Gasoline Equivalent)

Actual 2013 Volume

- **2013**
- **2020**
- **2030**

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS
Natural gas and Renewable Natural Gas (RNG)

Fossil natural gas prices are low and projected to remain low into the future

RNG is expensive to produce

Further Barriers
Uncertainty: Credit prices are variable, Carbon Intensities subject to change, long-term contracts unavailable

Credit price ceiling may not be high enough to encourage RNG requires support unless carbon intensities change or compliance target falls beyond 2020 goal
And much of the limited RNG is already being used

- **Landfill Gas**: 55 bcf/yr
- **Manure**: 14.6 bcf/yr
- **MSW (food waste)**: 10 bcf/yr
- **Landfill Gas**: 9.6 bcf/yr

Technical Potential

- Existing capacity (all end uses)
- **2012 CA vehicular NG consumption**: 14.7 bcf
- **2022 projection**

Based on Williams (2014)
Fuel Cell Vehicles are here, but it’s early days
FCV Market Intro. Dates Announced by Automakers

<table>
<thead>
<tr>
<th>Company</th>
<th>Previous demos</th>
<th>Commercialisation dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMW</td>
<td>7 generations of H₂ ICE saloons</td>
<td></td>
</tr>
<tr>
<td>Daimler</td>
<td>>100 B-Class vehicles</td>
<td></td>
</tr>
<tr>
<td>Honda</td>
<td>>100 FCX clarity (C-Class FC car)</td>
<td></td>
</tr>
<tr>
<td>Hyundai</td>
<td>Now deploying a fleet of ix35 SUV’s</td>
<td></td>
</tr>
<tr>
<td>Nissan</td>
<td>30 X-Trail SUV in US/Japan</td>
<td></td>
</tr>
<tr>
<td>Toyota</td>
<td>~100 SUV vehicles US/Japan/Germany</td>
<td></td>
</tr>
</tbody>
</table>
DOE: Progress in FC Technologies

Projected Transportation Fuel Cell System Cost

-Projected to high-volume (500,000 units per year)-

Current status: $55/kW vs ultimate target of $30/kW

Updated Analysis

<table>
<thead>
<tr>
<th>Year</th>
<th>FC Systems Cost ($/kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>$124/kW</td>
</tr>
<tr>
<td>2007</td>
<td>$106/kW</td>
</tr>
<tr>
<td>2008</td>
<td>$81/kW</td>
</tr>
<tr>
<td>2009</td>
<td>$89/kW</td>
</tr>
<tr>
<td>2010</td>
<td>$59/kW</td>
</tr>
<tr>
<td>2011</td>
<td>$57/kW</td>
</tr>
<tr>
<td>2012</td>
<td>$55/kW</td>
</tr>
<tr>
<td>2013</td>
<td>$55/kW</td>
</tr>
</tbody>
</table>

2020 Target $40/kW

Ultimate Target $30/kW

UCDAVIS
SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS
Trucks will need to transition, and their path is very unclear

Two possible scenarios to cut long-haul CO2 by 80% in 2050

(STEPS Freight White Paper, June 2015)
What is available to achieve a two degree scenario?

• And finally...
 – Electric vehicles
US Annual PEV Sales slowing in 2015

• Total LDV vehicles in USA > 250 million
• USA LDV sales 2015 = 17.5 million
• Total PEVs registered in USA > 450,000
The slowing of the market might suggest a “chasm” between early & more economic minded buyers

Motivated by difference & willing to pay extra

Chasm

Motivated by sameness & want good price
A plausible California scenario based on laws, incentives & history of previous technology rollouts

1st generation policy, "innovators" & infrastructure 200,000 PEVs

2nd generation batteries, vehicles, "followers" 500,000 PEVs

3rd generation: batteries, vehicles, “core market” 800,000 PEVS

4th generation 3 - 4 million???

2010 1-2% 3-5% of market
2015 300 200 150 Lithium pack prices per kWh
2020 2025 Early core market: 6-15%
2030 Main market 15-25%

California 2025 ZEV goal = 15% / 1.5 million BEVS, FCV & PHEVs

Curve based on rollout of HEVs in Japan & California 1997-2015
Why is California doing well?

1. ZEV laws & success with regulation of clean air
2. High income car culture
3. "Tech" industry

PLUG-IN ELECTRIC VEHICLE REGISTRATIONS PER THOUSAND PEOPLE BY STATE, 2014

National Renewable Energy Laboratory analysis, R.L. Polk,
The technology industry in the San Francisco Bay Area creates strong markets for new technology.

San Jose – about 10% of LDV sales in 2015 were PEVs.

Legend
- hov 2012
- BEV / Total
 - 9.1% - 20.5%
 - 20.6% - 31.8%
 - 31.9% - 43.2%
 - 43.3% - 54.5%
 - 54.6% - 65.9%
 - 66% - 77.3%
 - 77.4% - 88.6%
 - 88.7% - 100%
The longer drives in Los Angeles has encouraged PHEVs, which have been very popular for HOV lanes.
Challenges & opportunities in US PEV market development

- Slow turnover of fleet - 20 years.
- Low cost of gasoline; shift to larger vehicles
- High Cost of ZEV & PEV technologies
- Rate of product rollout into many vehicle classes
- Development rate of consumer awareness, knowledge, experience & product valuation
- Uneven development of charging infrastructure (congestion at chargers)
In US C segment, HEVs and PEVs are at top of price structure (2013)
We’ll need it all to hit this 2°C Transport Scenario

Fulton et al, 2015, in Biofuels, Biorefining and Bioproducts”