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Biofuel vs. Petroleum 

Biofuel Petroleum 
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Grown  Processed  Burned 

CO2 

 
CO2 

 

 

$ coproducts? 

Extracted  Processed  Burned 

CO2 

 

 

$$ coproducts! 

Surface land use:  ~100% 

Process up time: ~25% 

Surface land use: <<50% 

Process up time: ~100% 
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What really happens:  Food AND Fuel! 
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Data	from	2012	10-K	(in	thousands)
Gross	profit	(loss):
Ethanol	production (4,895)$						
Corn	oil	production 32,388$					
Agribusiness 35,973$					
Marketing	and	distribution 32,362$					
Intersegment	eliminations 943$											
Total 96,771$					



What’s next after PETRO? 
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10% improvement of land use 

based on geometry alone! 

‣ PETRO 

– Improving Energy & Carbon Flow via engineering biology 

– Sole metrics:  Cost /Energy in fuel product, coproducts 

‣ Other Approaches: 

– IT-enabled “Precision” Agriculture 

– Component Improvements 

– Rethinking the System 

 

 



Plant Biotechnology Journal 

24 OCT 2013 DOI: 10.1111/pbi.12131 

16% DW TAG  

× 9 tons per acre  = 48 GJha-1
y-1 

…vs. soybean  =  17 GJha-1
y-1 

…vs. corn  = 80 GJha-1
y-1 

Can tobacco be an energy crop? 
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http://onlinelibrary.wiley.com/doi/10.1111/pbi.12131/full#pbi12131-fig-0002
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Storage: Cornerstone of Grid and Vehicle 
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Grid Storage: 

GRIDS 

Vehicle 

Storage: 

BEEST 

RANGE 

Distributed 

Generation 



ARPA-E’s Grid Storage Portfolio 
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GRIDS: 

 

100 $/kWh 

5000 cycles Energy Density (Duration) 



ARPA-E’s Vehicle Storage Portfolio-BEEST 
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BEEST pushed the boundaries of energy storage 

Highest theoretical 

energy density 

ARPA-E 

Commercial 



ARPA-E’s Vehicle Storage Approach-RANGE 
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Focus on system optimization led to novel EV storage approaches 

Energy Density of Battery Chemistry/Cell 

System 

Goal 

System/cell 

constant = 1 

RANGE 

Approach 

Multi-functional 
design 

Robust chemistry/ 
architecture 

innovation 

Current robust 
chemistry/ 

architecture 

TARGETS: 

 

100-125 $/kWh 

1000 cycles 



RANGE Program Portfolio 
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Aqueous Robust Non-aqueous 

Multifunctional Solid State 

cloteam, LLC 



Requirements for “One Battery For Everything” 

17 

Cost ($/kWh) Life (cycles) Specific energy (Wh/kg) 

Grid 100 5000 - 

Electric Vehicles (EVs) 100-150 1000 100+ 

Distributed Generation ? 5000? - 

Grid 

DG Vehicle Li-S batteries 

Low-E flow cells 

Pb acid batteries 

A > 100 Wh/kg, >> 10000 cycle solution is the key 

? 



Benefits of “One Battery For Everything” 
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Favorable 

economics 

Rapid charging 

Cost ($/kWh) Life (cycles) Specific energy (Wh/kg) 

Grid 100 5000 - 

EVs 100-150 1000 100+ 

Distributed Generation ? 5000? - 

One Battery for 

Everything 

< 200? >> 10000 100+ 

Favorable economics 

Viable V2G 

“One For All” 

Solution 



Searching For The Ultimate Energy Storage 
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ΔS 

Δ
G

 

Li-S, Li-FeF3,  

LiSi 

Pb-acid 

Ni-MH 

Li-Ion 

Low energy Li-ion 

Capacitor 

Most  

desirable 

Opportunity 

Ni-Cd 



Batteries That Live “Forever” 
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Anode for Li replenishment 

Wang, et al, J. Power Sources, 196, 5966  Zaghib, et al, J. Power Sources, 196, 3949 

The ultra long life 

LiFePO4-Li4Ti5O12 

Battery 



A Unified Generation/Storage Future  
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1920 1940 1960 1980 2000

Electricity 350%  

 Energy Intensity 50%  

 



1920 1940 1960 1980 2000

Productivity 400%  

 

intelligence 

Information 

Optimization 

Flexibility 





Grid Intelligence: GENI 

U.S. DOE, “National Transmission Grid Study” (2002) 

Topology control 
Demand opt. 

Reactive P cont. 
Stochastic opt. 
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Physics models 
Degradation models 

Dynamic controls 
Load prediction 

Order red. 

Internal Temp 
Strain 

Potential 
Chemistry 

Reconfigurable 
Cell power mgmt 

Cell thermal mgmt 
Wireless bms 
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Battery Intelligence: AMPED 
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One Battery for Everything 
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‣ Integrated sensors 

‣Power conversion 

‣Computation, control, 

and diagnostics 

‣Wireless readout 

One Intelligent Battery for Everything 
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One Intelligent Battery for Everything 
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Air travel for short-duration trips 
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>1,200 ft 

30 mi 

Shorten travel times 
• Average speed:  >100 mph vs. average city speed ~30 mph 

 

Reduce idling and braking 

 

Direct routes 
 

Potential for safer travel 
• In a collision of 1,500 lb car vs. 15,000 lb truck, who wins? 



Move toward automation 
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Collision avoidance 

 

 

Vehicle-to-vehicle communication 

  

 

 

Autonomous vehicles 

Boeing.com 

Fly-by-Wire 

 

 

Semi-autonomous 

 unmanned aerial vehicle 

 

 

Fully autonomous aircraft 
 

Sensing 

 

Communication 

 

Intelligent 

Controls  

 

 



‘Flying cars’ are cool… 

Would they consume much more energy? 
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Moller M400 

Terrafugia TF-X 

Terrafugia Transition 

Joby Aviation Monarch 



Breakdown of electric vehicle losses  
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Inertia to 

Wheels 

64% 

Rolling  

Resistance 

Aerodynamic  

Drag EPA city mpg ~ 105 
 

 

65 mpg in heavy summer traffic 
 

Net DC 

100% 

Losses 

22% 
Accessories 

4% 

Powertrain 

Regenerative Braking -38% 

Nissan Leaf.  Argonne National Laboratory 

47% 



Current light aircraft 
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Sikorsky S-333™ 

• MPG ~ 5  

• 2,460 lbs 

• 4 person 

Schiebel 

Camcopter® S-100 (UAV) 

• MPG ~ 8 

• 441 lbs 

Sikorsky 

Cirrus Aircraft 

Cirrus SR22  

• MPG ~ 16 

• 3,600 lbs 

• 4 person 

 



Estimation of MPG for VTOL 
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CD =Cd +
CL

2

p ×AR ×es

FD =
1

2
rSCDv

2

3,000 ft 

1.2 kWh 

30 mi 

Key assumptions: 

 

1100 lb aircraft       ηEM = 92% 

ηbattery = 97%           ηprop = 80% 
 

E =mgh

Losses from drag in cruise 

Potential energy of aircraft 



Estimation of MPG 
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36 ft 

Cruise Lift over Drag (L/D) 

28 

Cruise power 80 kW 45 kW 28 kW 16 kW 

% mgh 5% 13% 20% 35% 

% weight 

battery 
94% 38% 24% 15% 

MPG 30 80 120 200 

8 

33 ft 22 ft 

14 

22 ft 

3 



Thank You 
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