AERIS CACC Enabled Eco Approach / Departure Small Scale Test & Evaluation
April 7, 2017

Project Sponsor
U.S. Department of Transportation
Federal Highway Administration

This material is based upon work supported by the U.S. Department of Transportation under Cooperative Agreement No. DTFH6114H00002. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the Author(s) and do not necessarily reflect the view of the U.S. Department of Transportation.
Use connected vehicle technologies to improve mobility and decrease fuel consumption / emissions for coordinated strings of vehicles by:

- Reducing the time spent idling
- Minimizing unnecessary accelerations and decelerations
- Improving traffic flow at signalized intersections and traffic progression

Employ wireless data communications sent from roadside equipment to connected vehicles

Vehicles leverage information from roadside and surrounding vehicles

- Signal Phase and Timing (SPaT) (via V2I communication)
- Intersection geometry data (MAP) (via V2I communication)
- Basic Safety Message (BSM) (via V2V communication)

System determines optimal speed profile needed to optimize mobility, fuel economy and emissions reduction
Infrastructure-side Contribution to CACC Enabled Eco A/D Function

- Infrastructure employs Basic Safety Message data, data from other available V2X communication, and data from infrastructure-based sensors at an intersection to:
 - Estimate/predict queue length and traffic volume at the intersection
 - Identify strings of Eco A/D vehicles
 - Determine whether an approaching string of Eco A/D vehicles will clear an individual intersection during the green phase

- Infrastructure assesses whether a minor signal timing adjustment can better accommodate an approaching string of Eco A/D vehicles if:
 - Entire Eco A/D vehicle string will not clear within the current green phase
 - Minor adjustment such as a green extension will allow the vehicle string to traverse the intersection cleanly
 - Traffic already waiting in a queue, or expected shortly, at other approaches to the intersection will not be significantly affected

- Infrastructure facilitates Eco A/D concept for all modes of signal operation
Desired Outcomes

• Demonstrate, through simulation then actual road testing
 – Measurable improvement in:
 • Traffic mobility
 • Fuel economy
 • Reduction in emissions

• Define the requirements needed to realize the deployment of an actual system