System Considerations in Waste Heat Recovery

Gang Chen

Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, MA 02139

Email: gchen2@mit.edu http://web.mit.edu/nanoengineering

Energy Usage in US

U.S. Energy Flow Trends – 2002 Net Primary Resource Consumption ~97 Quads

Source: Production and end-use data from Energy Information Administration, Annual Energy Review 2002. *Net fossil-fuel electrical imports. *Biomass/other includes wood, waste, alcohol, geothermal, solar, and wind. June 2004 Lawrence Livermore National Laboratory http://eed.lini.gov/flow

Waste Heat Source Temperature

Waste Heat Recovery- Technology and Opportunities for U.S. Industry BCS, Incorporated — Energy Efficiency and Renewable Energy Office, DOE (2008).

Direct Energy Conversion Device Working Range (Back of Envelope)

Energy Conversion Efficiency

Zebarjadi et al., Energy & Env. Sci., 5, 5147,2012

System Consideration

- How to collect heat?
- How to reject heat?
- What is system cost?

Thermoelectric Devices

Nondimensional Figure of Merit

Nanocomposite Synthesis

Increase interfacial scattering by mixing nano-sized particles.

Batch fabrication for large scale application.

Nano Bi₂Te₃ Poudel et al. Science, v. 320, p. 634, 2008

Materials ZT Improvements

From Z.F. Ren

Power and Cost Example

Dimensions of TE elements: 1.5mm x 1.5 mm x 1.6 mm

- □ Material cost per power output ≈ 0.1 \$/Watt
- **Cost of TE material can be small relative to total system cost!**

Vehicle Waste Heat Recovery

Heat to Electricity Recovery from Gas Stream

- For thermoelectric devices, T_H higher is better
- However, maximum heat intercepted from hot gas stream, mc_p(T_{h,i}-T_H), decreases with T_H

Efficiency Expectations

- T_{h,i}=600 °C, T_c=50 °C
- Optimal Hot Side Temperature ~ 270 °C

Locally Optimized Systems

- 1-3% Absolute Efficiency
- 5-20% Fuel Saving
- Engineering Room
- Materials Development
- 10% Cogeneration System

Heat Rejection

$$q = k \frac{\Delta T}{L} \approx 1 \frac{W}{m * K} \frac{100 \text{ K}}{L}$$

 $q=5000 \text{ W/m}^2$; L=20 mm

- Too expensive!
- What are TE filling fractions
- What are insulation requirement
- What are heat sink requirement
- What are system cost

From Micro Watts to Giga Watts

Vehicles

Power Plants

Solar Thermoelectric Power Generator (STEG)

$$q = k \frac{\Delta T}{L} \approx 1 \frac{W}{m * K} \frac{100 \text{ K}}{L}$$

Kraemer et al., Nature Materials, 10, 523, 2011

Segmented TE Device

Kraemer et al., Nature Energy, 1, 16153, 2016.

Summary

- Waste heat is everywhere.
- System thinking is crucial, heat collection and rejection subsystems should be considered for successful deployment.
- Applications could also be where large entropy is generated.
- Excellent progress in materials, challenges are taking materials to devices and systems that can penetrate market.

