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The Goal: To develop solid state energy conversion technology based on Multiferroism through the 

innovation in computational design and materials synthesis. 
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Thermoelectric? 
50+ years of work!
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Multiferroic Energy Conversion
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“Multiferroism” by Phase Transformation

The key innovation for high efficiency and high 
power output is to use a first order phase 
transformation

Heusler Handbook, (ed. C. Felser and A. Hirohata) Energy Env. Sci. 6 (2013), 1315Adv. Energy Materials 1 (2011), 97-104 
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First-order phase transformations with 
latent heat ensure large mixed phase 
region in T-S diagram to construct high 
efficiency Carnot and related cycle.
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Key Idea

๏ Materials Issues 
๏ Reversibility of phase transformation 
๏ Chip level integration - requires thin films architecture 
๏ Scalability 

๏ Device reliability 
๏ Efficiency and cost

✓ New Idea for direct heat-to-
electrical energy conversion 
using electromagnetic properties

✓ Adapted to energy conversion at 
small temperature difference, 
~10-100 ºC 

✓ Highly tunable (transformation 
temperature and ranges)
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As λ2 =1, H —> 0 
controlled by tuning lattice parameter

• Thermal 
degradation 

• Change of Tc 
• Materials failure 

after few cycles 

• Unstressed crystallographic planes between 
phases that remain undistorted during phase 
transformation “compatible parallelism” 

• Confirmed both theoretically and experimentally.

Adv. Funct. Mater., 20, 1917 (2009); Nature Materials, 5, 286 (2006);  Acta Mater. 57, 4332 (2009)
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Our Approach
Confidential..



Innovation in Growth of Ferroelectric Oxides
Combinatorial Hybrid Molecular Beam Epitaxy

Ti tetraisopropoxide 
(TTIP)

Adv. Mater. Interfaces 3, 1500432 (2016).

Nat. Mater. 9, 482 (2010).

J. Vac. Sci. Technol. A 33, 060608 (2015). 

Appl. Phys. Lett.103, 212904 (2013). 
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Innovation in Growth of Ferroelectric Oxides
Combinatorial Hybrid Molecular Beam Epitaxy

Ba

Ti tetraisopropoxide 
(TTIP)

solid  
Ti

TTIP

✓ Exceptional control over composition 

✓ Combinatorial synthesis 
✓ Using in-situ electron diffraction to calibrate composition

Adv. Mater. Interfaces 3, 1500432 (2016).

Nat. Mater. 9, 482 (2010).

J. Vac. Sci. Technol. A 33, 060608 (2015). 

Appl. Phys. Lett.103, 212904 (2013). Nature Comm, 6, 8475 (2015)

http://scitation.aip.org/content/avs/journal/jvsta/33/6/10.1116/1.4933401


Innovation in Growth of Ferroelectric Oxides
Combinatorial Hybrid Molecular Beam Epitaxy
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✓ Growth of high quality epitaxial films using hybrid MBE 
✓ Excellent structural quality and interface control

Adv. Mater. Interfaces 3, 1500432 (2016).

Nat. Mater. 9, 482 (2010).

Phys. Rev. Lett. 117, 106803 (2016). 

J. Vac. Sci. Technol. A 33, 060608 (2015). 

Appl. Phys. Lett.103, 212904 (2013). 

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.106803
http://scitation.aip.org/content/avs/journal/jvsta/33/6/10.1116/1.4933401
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