

ARPA-E GENSETS Program

GENerators for Small Electrical and Thermal Systems

Ji-Cheng (JC) Zhao

Program Director Advanced Research Projects Agency – Energy (ARPA-E) U.S. Department of Energy

GENSETS Kickoff Meeting, October 21-22, Chicago

Meet the ARPA-E GENSETS team

Ji-Cheng (JC) Zhao Program Director

John Tuttle Senior T2M Advisor

Gokul Vishwanathan Technical SETA

AnneMarie Lewis Technical SETA

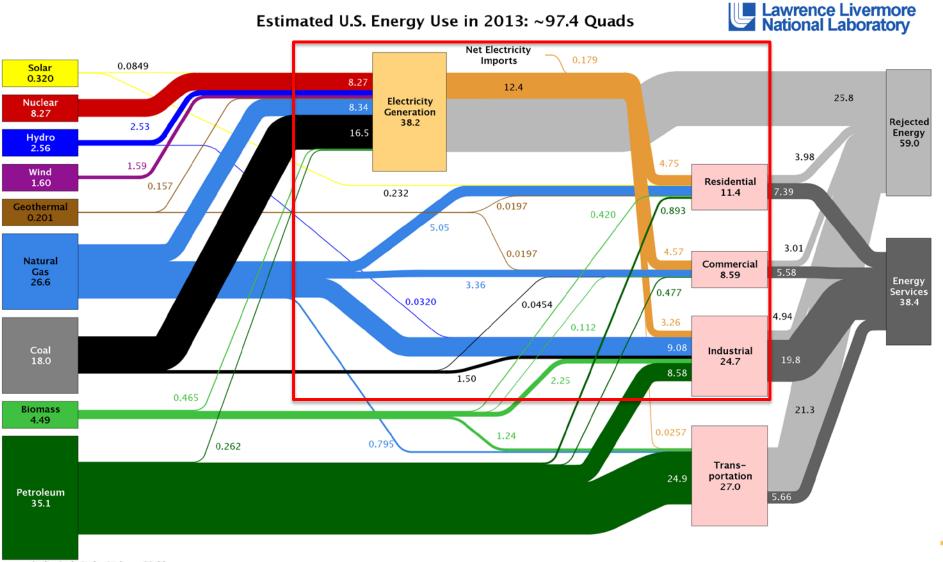
Aron Newman Technical SETA

Jessica Kaplan Programmatic SETA

Jennifer DeMagistris Programmatic SETA

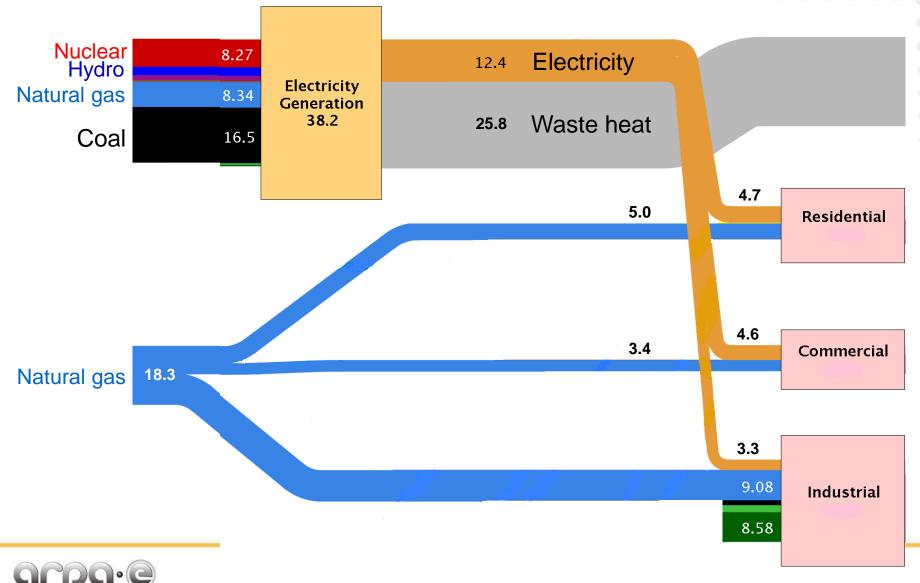
Cybil Redmond Programmatic SETA

Ashwin Salvi Fellow

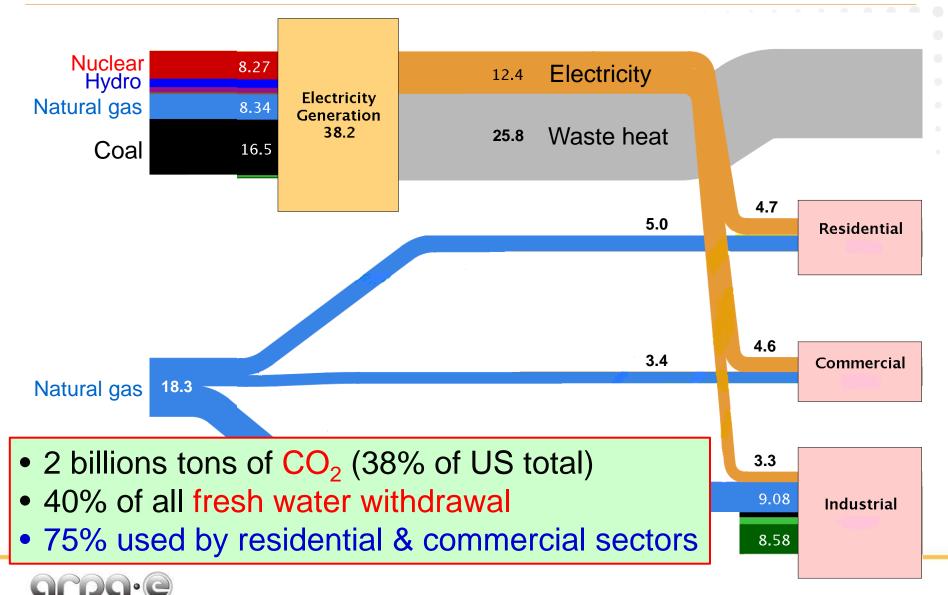


William Regan Former Fellow

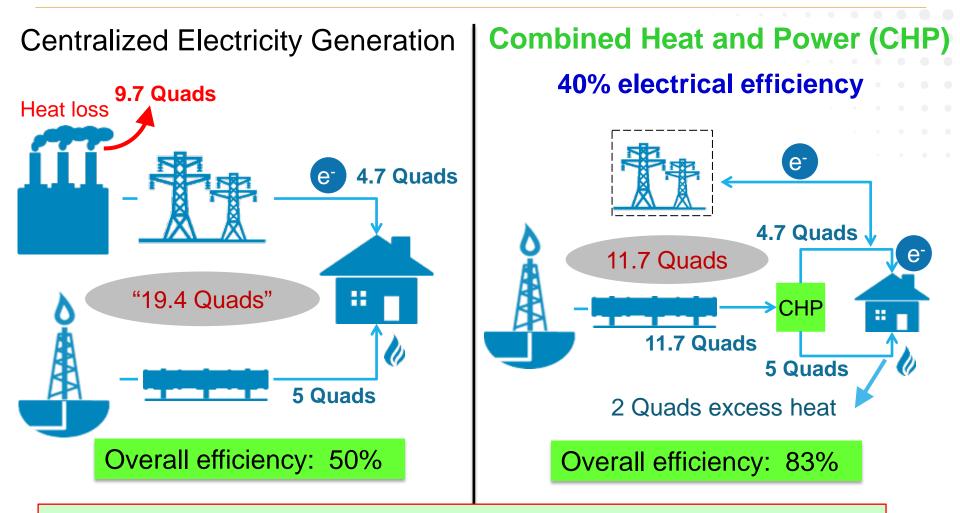
Thank Bryan Willson and Chris Atkinson for their help!


US annual energy use (2013 data)

1 quad ≈ 300 TWh ≈ 300,000 GWh ≈ 300,000,000 MWh


US annual electricity generation statistics

CHANGING WHAT'S POSSIBLE


Simplified 2013 data Sources: LLNL, EIA, EPA

US annual electricity generation statistics

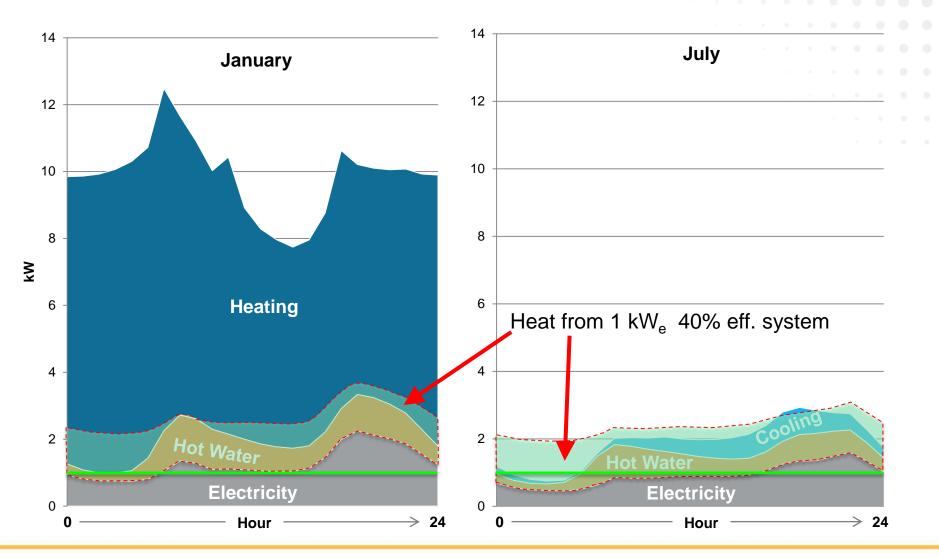
Simplified 2013 data Sources: LLNL, EIA, EPA

US residential sector annual energy use

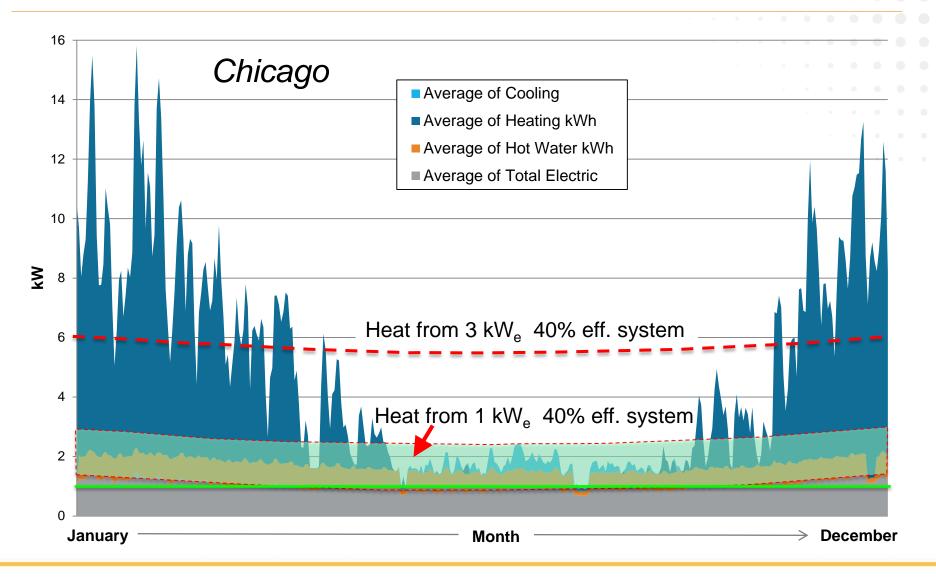
- 2.5 quads of energy savings potential
- 200 millions tons of CO_2 reduction (4% US total \approx 40 M cars)
- 4% reduction of US fresh water withdrawal

Why haven't you bought a generator for your home?

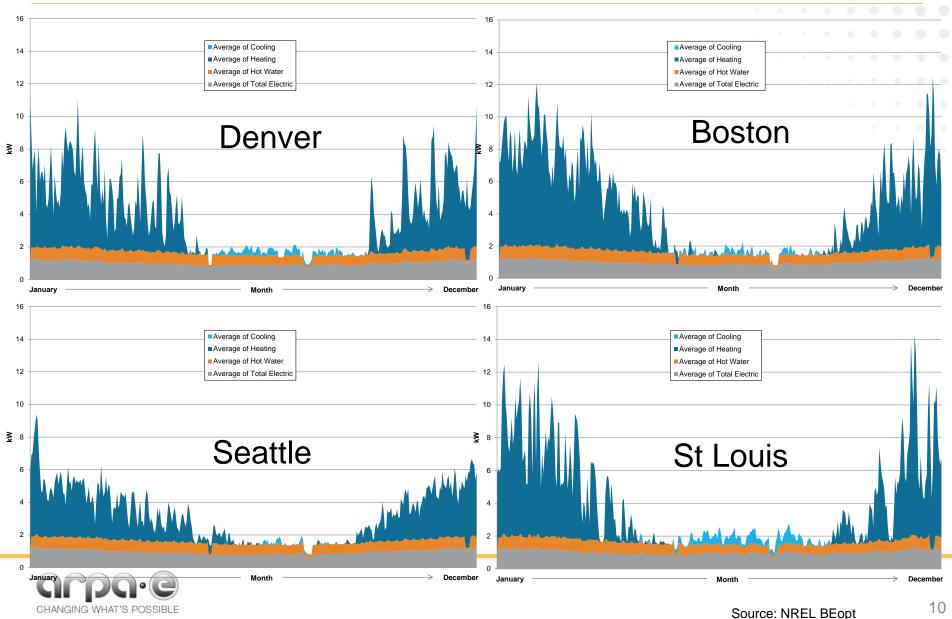
~ 500,000 US homes have backup generators <1,000 of 110,000,000 <u>US homes</u> have CHP systems

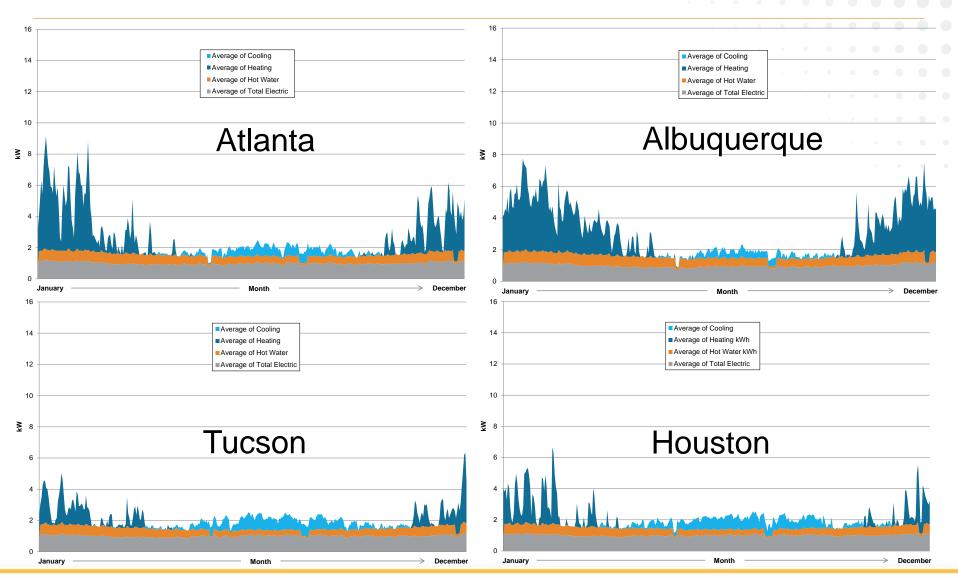

- Low fuel to electricity efficiency (<26%)
- High cost for long durability ones (>\$6,000)
- Low lifetime for low-cost generators (<1 yr)
- Large kW size than optimal

70 million US homes have piped-in natural gas already


Hourly residential load profile: Chicago

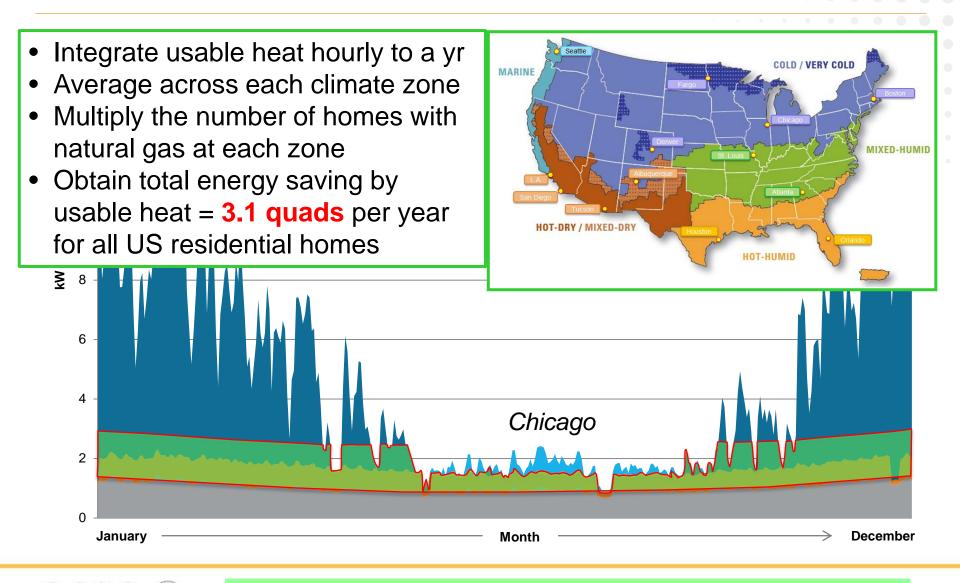
8


Annual residential load profile: Chicago

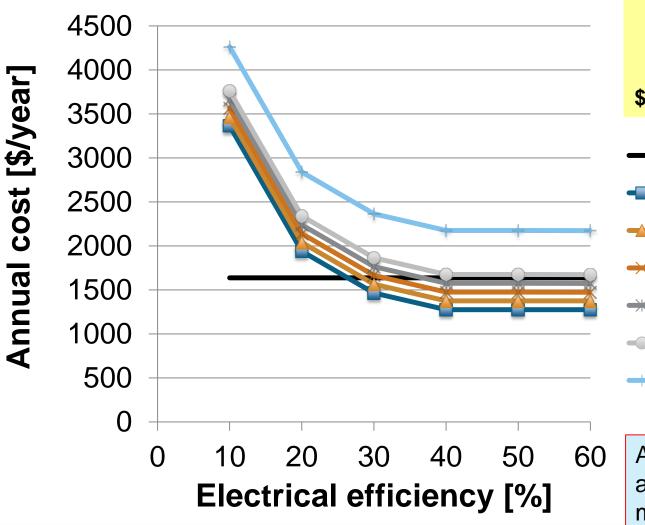


9

Annual residential load profiles



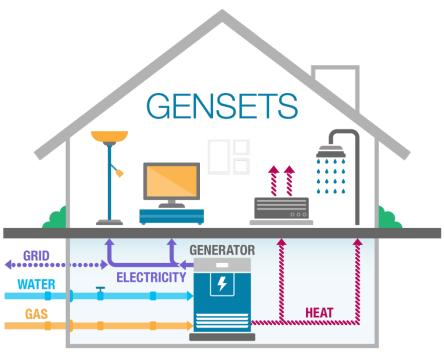
Annual residential load profiles



Energy saving calculations

1 quad ≈ 300 TWh ≈ 300,000 GWh ≈ 300,000,000 MWh

Techno-economic analysis


Assumptions 1 kW electrical load 1.5 kW heat load 90% capacity factor \$0.005/kWh O&M 10 year lifetime \$0.11/kWh electricity \$10.85/thousand cf NG

Baseline
Capex 1000
Capex 2000
Capex 3000
Capex 4000
Capex 5000
Capex 10000

Additional ~ \$1,400 already budgeted for meters, other balance of plant & installation

GENSETS: GENerators for Small Electrical and Thermal Systems

Technologies to enable widespread deployment of CHP systems for residential & commercial sectors

- 1 kW electricity system
- 40% electrical efficiency
- 10 year durability/life
- \$3,000 system cost
- Save energy (~ 2.5 quads)
- Save \$ (~ 4-5 year payback)
- Reduce CO₂ by 200 million tons
- Reduce fresh water withdrawal (~4% of US total)
- Increase power reliability
- \$200 billion business opportunity

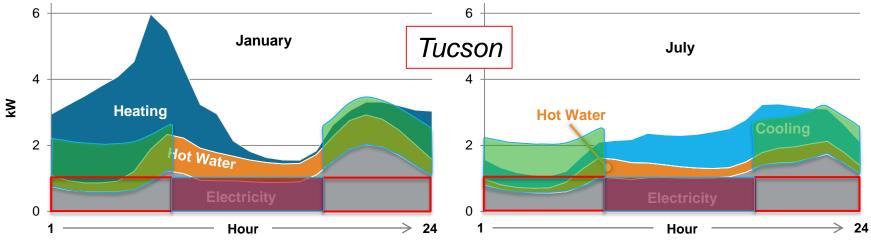
Improve Efficiency Redu > +25% 1 - 200

Reduce Emissions

Long-Term Objectives and Metrics (Primary)

Number	Property	Primary Target
1.1	Electrical power generation capacity	1 kW _e
1.2	Fuel to electricity conversion efficiency (LHV)	≥40%
1.3	Useful heat energy output (>80°C)	>1kW/kW _e
1.4	Capacity factor	≥99.9 %
1.5	Complete system cost excluding installation/balance of plant costs	≤\$3,000
1.6	System lifetime	≥10 years
1.7	Total system-out NOx	≤0.07 lb/MWh
1.8	Total system-out CO	≤0.10 lb/MWh
1.9	Total system-out VOC	≤0.02 lb/MWh
1.10	Total system-out PM	≤0.40 g/kWh
1.11	Total system-out CO ₂ equivalent (CO ₂ & CH ₄)	≤1100 lb/MWh
1.12	System noise	≤55 db(A) 3 ft. away

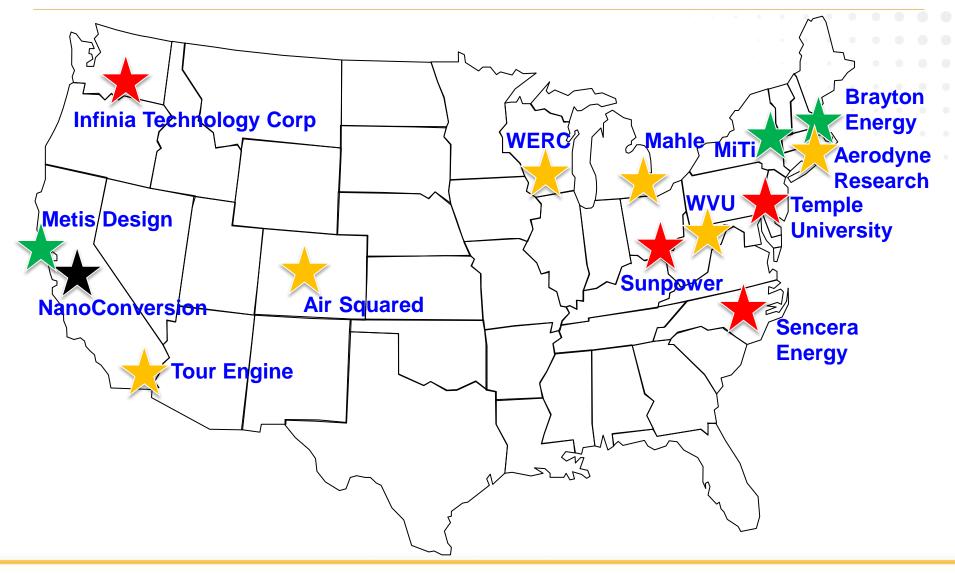
Long-Term Objectives and Metrics (Secondary)


Number	Property	Secondary Target
1.13	Methane number for operation	≥70
1.14	Number of regular maintenance services	≤1/year
1.15	Operation and maintenance cost	≤\$ 0.005/kWh
1.16	Time for regular maintenance	≤60 minutes/service
1.17	System mass	≤150 Kg

Other modes of operation...

Integration with solar ... load-leveling ... load-peaking

GENSETS Program Awards


\$32 million total for 14 teams

- 6 ICE teams
- 4 Stirling engine teams
- 3 Microturbine teams
- 1 Sodium electrochemical cycle team

12 small businesses, 2 universities, 1 large business

GENSETS Portfolio

GENSETS Portfolio Technologies (Page 1 of 2)

Project	Technology type	Key Technologies
West Virginia University (WVU)	ICE	Free piston, spark-ignited stoichiometric ICE
Aerodyne Research Inc.	ICE	Free piston, homogeneous charge compression ignition ICE
Wisconsin Engine Research Consultants, LLC (WERC)	ICE	Spark Assisted Compression Ignition (SACI) ICE
Mahle Powertrain	ICE	Turbulent Jet Ignition (TJI) ICE
Tour Engine Inc.	ICE	Novel split cycle ICE with a shuttle valve for transferring working fluid
Air Squared Inc.	ICE	Scroll expander based waste heat recovery for SACI ICE
Brayton Energy	Microturbine	Sub-atmospheric microturbine employing screw compressor and expander
Metis Design Corporation (MDC)	Microturbine	Microturbine with rotating vaneless diffuser (RVD) and low swirl burner
Mohawk Innovative Technology Inc. (MiTi)	Microturbine	Very high speed microturbine with tessellated compressor and expander & airfoil bearings

GENSETS Portfolio Technologies (Page 2 of 2)

Project	Technology type	Key Technologies
Temple University	Stirling engine	Free Piston Stirling Engine (FPSE) manufactured using additive manufacturing with a high temperature heater head
Sunpower, Inc.	Stirling engine	FPSE based on their 80 W Advanced Stirling Converter for space applications with gas bearings
Infinia Technology Corporation (ITC)	Stirling engine	FPSE with a high temperature heater head and flexure bearings
Sencera Energy	Stirling engine	Kinematic Stirling engine employing flexures instead of pistons
NanoConversion Technology (NCT)	Solid-State	Sodium ion expansion cycle with adiabatic combustor

22

Technology Leverage

Space & Aerospace Technology to Civilian Applications:

- Stirling engines
- Jet engine superalloys
- Sodium electrochemical cycle (AMTEC)

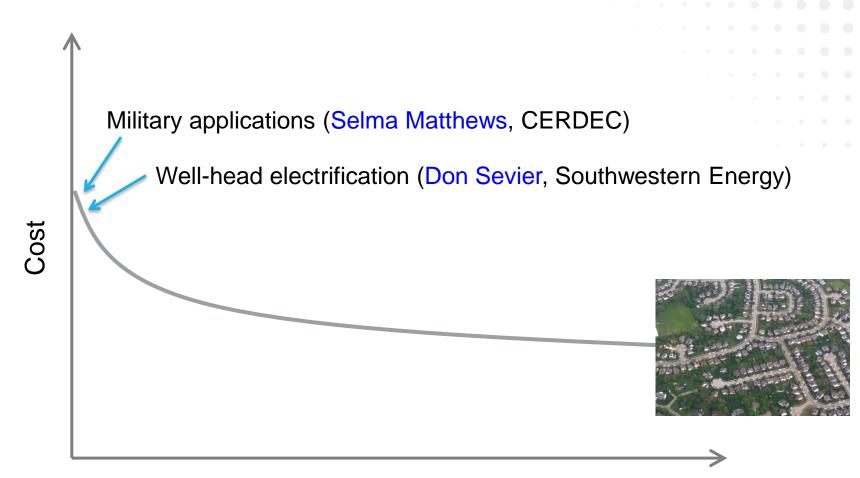
Automotive Technology to Home Applications

- Internal combustion engines
- SiC developed for turbo-chargers
- Massive manufacturing experience

Technology leverage across the teams can be very beneficial

Common challenges

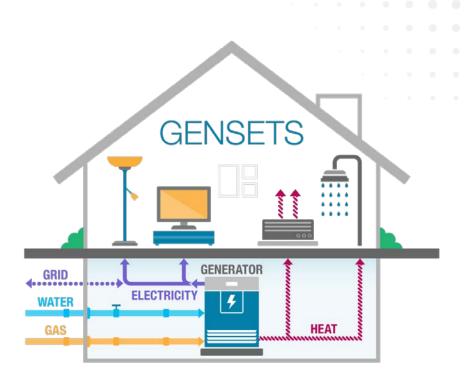
- Installation, Integration and Interfacing
 - Eric Guyer (Yankee Scientific): *First-hand experience of installing residential CHP systems*
 - Steve Willard (EPRI): *Grid integration of micro-CHP distributed generation – EPRI perspective*
 - Kris Jorgensen (A.O. Smith): Perspectives on residential μ-CHP
- Combustion at Small Scale
 - Yiguang Ju (Princeton): *Small scale combustion and power generation: challenges and opportunities*
- Materials and Manufacturing
 - Andrew Carter (Stratasys): Additive manufacturing



Common challenges

- Technology to Market:
 - Frank Felder (Rutgers): *Economic thinking and tools to* value the acceleration of technology in residential GENSETS
 - Selma Matthews (CERDEC): Small tactical electric power
 - Don Sevier (Southwestern Energy): Oil and gas industry electric power for upstream operations
 - Steve Simons (Sempra Energy): SoCalGas clean generation program
 - Joel Bluestein (ICF International): Residential CHP economics and markets
 - Rick Murphy (AGA): *Why natural gas market fundamentals support long term investments in technology developments*

Potential early adopters

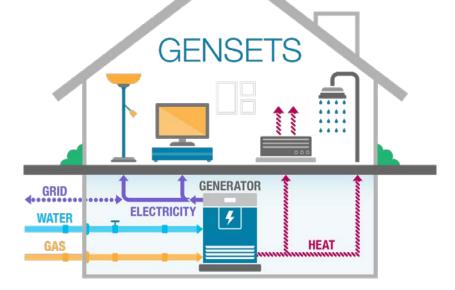


Number of units manufactured

Effective integration with hot water tanks & HVAC

- 2.5 to 5 kW $_{\rm th}$ system
- High efficiency
- Low cost: < $100 / kW_{th}$
- 10 year lifetime
- Easy integration with hot water tanks and HVAC's
- Efficient heat to cooling technology
- Low manufacturing / development cost

		DAY 1: Wednesday, October 21 st		Ì.
8:30 – 9:00 AM	Arrival	Registration and Continental Breakfast		
9:00 – 9:15	Welcome and	Welcome from the ARPA-E Leadership	Ellen Williams ARPA-E	
9:15 – 9:45	Overview	Welcome to the GENSETS Community	JC Zhao ARPA-E	
9:45 – 10:15	Technology	First-Hand Experience of Installing Residential CHP Systems	Eric Guyer Yankee Scientific	
10:15 – 10:45	Tutorials	Small Scale Combustion and Power Generation: Challenges and Opportunities	Yiguang Ju Princeton University	
10:45 – 11:00		BREAK		
11:00-11:20		Grid Integration of Micro-CHP Distributed Generation - EPRI Perspective	Steve Willard EPRI	
11:20-11:40	Technology	Why Natural Gas Market Fundamentals Support Long Term Investments in Technology Development	Rick Murphy American Gas Association	
11:40-12:00	Opportunites and Challenges	Residential CHP – Economics and Markets	Joel Bluestein ICF International	
12:00-12:30 PM		Panel Session – Q&A		
12:30-1:15		LUNCH		
1:15- 1:45	Technology Tutorials	Advanced Manufacturing Services: Additive Metals	Andrew Carter Stratasys Direct Manufacturing	:
1:45 – 2:45	Project Overviews	8-min Program Overview Presentations	Project Pls	
2:45 – 3:00	BREAK			
3:00- 4:00	Project Overviews	8-min Program Overview Presentations	Project Pls	
4:00 - 4:15	Programmatics	Best Practices for Working with ARPA-E	Jessica Kaplan Booz Allen Hamilton	
4:30-6:00		POSTER SESSION		
6:30 – Onward	Dinner on Your Own			27


		DAV Or Thurselour October 200d	
		DAY 2: Thursday, October 22 nd	
8:30 – 9:00 AM	Breakfast		
9:00 – 9:05	Welcome to [JC Zhao ARPA-E	
9:05 – 9:25	T2M Introduc	John Tuttle ARPA-E	
9:25 – 9:45	Economic Thinking and Tools to Value the Acceleration of Technology in Residential GENSETS		Frank Felder Rutgers University
9:45 – 10:05	Natural Gas f Distributed Energy	or SoCalGas Clean Generation Program	Steve Simons Sempra Energy
10:05 – 10:25	Markets & Applications	Perspectives on Residential µ-CHP	Kris Jorgensen A.O. Smith
10:25 – 10:45		BREAK	
10:45- 11:15	Early	Small Tactical Electric Power	Selma Matthews U.S. Army CERDEC
11:15- 11:45	adopter markets	Oil and Gas Industry Electric Power for Upstream Operations	Don Sevier Southwestern Energy
11:45- 12:00		Closing Remarks	JC Zhao ARPA-E
Adjourn (Lunch on Your Own)			

Bloomberg Research Note, October 16, 2015:

US CHP: Don't Try This at Home?

"Currently, there are no good products on the market that are suitable for small private residences. A typical home, which has relatively small thermal load demand, would require a system no bigger than 1kW."

"... as of today, there is simply no readily-available technology to serve the residential market."

A generator in every home