

# Agent-Based Methods for Transportation Network Optimization

### Lei Zhang, Ph.D.

Associate Professor

Director, National Center for Strategic Transportation Policies, Investments, and Decisions

Director, Transportation Engineering Program Department of Civil and Environmental Engineering

University of Maryland, College Park

Phone: 301-405-2881 Email: lei@umd.edu

## **Agents and Their Behaviors**



| Decision Type            | Agents               | Time Scale                                           | Influenced By (Major Factors Only)                                      |
|--------------------------|----------------------|------------------------------------------------------|-------------------------------------------------------------------------|
| Driving Behavior         | Driver,<br>Vehicle   | Real-time                                            | Real-time surrounding traffic conditions                                |
| En-Route<br>Diversion    | Driver,<br>Vehicle   | Real-time                                            | Real-time congestion, traveler<br>information, traffic management, toll |
| Pre-Trip Route<br>Choice | Person               | Daily, Short-term                                    | Network knowledge, experience,<br>information, traffic management, toll |
| Departure Time           | Person               | Short-term, Fixed for<br>most work trips             | Schedule flexibility, dynamic tolls, information                        |
| Mode Choice              | Household,<br>Person | Mid-term                                             | Modal performance, personal attributes, vehicle ownership               |
| Destination Choice       | Household,<br>Person | Midterm (e.g. shopping)<br>or Long-Term (work)       | Spatial knowledge, information,<br>network LOS, HH/personal attributes  |
| Trip Frequency           | Household,<br>Person | Mid- to long-term, but<br>partially adjustable daily | Activity patterns, household/personal attributes                        |
| Vehicle Ownership        | Household            | Mid- to long-term                                    | Household attributes                                                    |
| Location Choice          | Household            | Long-term                                            | Household attributes, land use                                          |



http://tep.umd.edu

# **Theory and Methodology**



### **Traditional: Rational Behavior Theory**

- What agents SHOULD do
- Perfect information and rationality
- Optimizing behavior
- Maximizing utility, profit, welfare, etc.

**Econometric Models** and Mathematical **Optimization** 

**Equilibrium Analysis** 

### **Emerging: Descriptive Behavior Theory**

- What agents ACTUALLY do
- Imperfect knowledge and learning
- Time-dependent behavioral dynamics
- Empirically-derived behavioral rules

Artificial Intelligence, Agent-Based Models, and Simulation-Based Optimization

**Evolutionary Analysis** 



### **Descriptive Travel Behavior Theory**







### **Integrated Agent-Based Model**





# **Simulation-Based Optimization**

### Simulation Based Optimization

- Jointly optimize multiple operations and planning strategies
- Use simulation models for evaluation and now for optimization too
- Multiple modes can also be jointly optimized with multiple objectives





# **Active Corridor Traffic Management**





**Transportation Systems Research at University of Maryland** 

http://tep.umd.edu

### **Congestion: Baseline Scenario**





Transportation Systems Research at University of Maryland http://te

### Accident without ATM







### **Accident with ATM**







Transportation Systems Research at University of Maryland http://tep.umd.edu

# **Dynamic Pricing Optimization**





NVERSIT

### **Multi-Objective Optimization Results**



#### **Average Travel Time**

#### **Total Toll Revenue**



# China-Singapore Eco-City in Tianjin



#### Multimodal Transportation Planning and Optimization

- Target year 2020, area 30 km<sup>2</sup>
- Projected 350,000 residents
- Green transportation planning
- 145 TAZs, 556 nodes, 1,770 links
- 9 bus lines and 3 LRT lines
- 7 population groups, 7 activity pairs and 5 travel modes (Bus, rail, car, bike, walk)
- Transportation Planning goal: Public transportation and nonmotorized modes > 90% mode share by 2020





### **Multimodal System Optimization**



### Optimal [Parking restriction + Car sharing incentive + + Transit fare] for maximum user benefits



Transportation Systems Research at University of Maryland http://tep.umd.edu

### **Key Challenges: Behavior Data**



### **Model Calibration and Validation**



#### **Level-of-Service Comparison**



#### **Traffic Count Comparison**

|                       |                             | Freeways           | Freeways + Arterials |  |
|-----------------------|-----------------------------|--------------------|----------------------|--|
|                       | Average                     | 11%                | 15%                  |  |
| <b>'</b>              | Difference                  | (24 stations)      | (62 stations)        |  |
| ravel Time Comparison |                             |                    |                      |  |
|                       |                             | AM Peak            | PM Peak              |  |
|                       | Travel Time                 | 14%                | 12 %                 |  |
|                       | Difference $ \Delta $       | (9 corridors)      | (9 corridors)        |  |
| Trans                 | sportation Systems Research | http://tep.umd.edu |                      |  |

### Agency and User Support





#### SHA Agent-Based Model Web Reporting System



**Transportation Systems Research at University of Maryland** 

### **Real-Time Decision Support**





### **Model Transferability**



#### **Example: En-Route Diversion Model Transfer**



### Development Site Boston

### Application Site Baltimore



# **Closing Remarks**



- Similarity between Energy and Transportation Grids: Agents, Networks, Critical Infrastructure, ...
- Opportunity: Nonlinear and complex relationships between agent behavior and system performance
- Systematic identification of feasible behavior shifts that can produce significant system benefits
- Model development should be driven by data availability and analysis needs
- Big, exciting, but still imperfect data
- Decision-makers want more information, better information, and they want it now, in real time





# Questions, Comments, and Suggestions are Welcome. Please Contact:

Lei Zhang, Ph.D., **Associate Professor Director, National Transportation Center Director, Transportation Engineering Program Department of Civil and Environmental Engineering** 1173 Glenn Martin Hall, University of Maryland College Park, MD 20742 Email: lei@umd.edu Phone: 301-405-2881 Web: http://www.lei.umd.edu

