REPAIR Workshop Overview

Rapid Encapsulation of Pipelines Avoiding Intensive Replacement (REPAIR)

October 10th, 2019
Washington, D.C.

Jack Lewnard, Program Director ARPA-E
jack.lewnard@hq.doe.gov
REPAIR Development Team

Jack Lewnard
Program Director
ARPA-E

Patrick McGrath
Deputy Director of Technology
ARPA-E

Sade Ruffin
Tech SETA
Booz Allen Hamilton

Dipankar Sahoo
T2M SETA
Booz Allen Hamilton

Mark Pouy
Tech SETA
Booz Allen Hamilton
REPAIR Fit With ARPA-E Mission

- Natural gas provides 31% of US primary energy, serves 70 MM homes, 5 MM commercial customers
- Abundant and affordable domestic energy resource
- Pipeline infrastructure repair/rehabilitation spending >$3B/year across all sectors
- Novel rehabilitation technologies touch material science, chemistry, physics, robotics, data analytics, etc.
Gas Distribution 101

- Gas utilities start ~mid-1800’s
- Low-pressure “Town gas” from coal
- Wrought iron pipe, joined by couplings, through early 1900’s
- Cast iron pipes joined with bell/spigot and packing, through 1950’s
- Transition to natural gas in 1940’s and (bare) steel in 1950’s
- Transition to plastic pipe in 1960’s
- Continuous investment to upgrade infrastructure; more than 60,000 miles of cast iron and bare steel have already been replaced
Issues and Options

▸ Cast Iron (<2 bar, 35 psi pressure)
 • Leaks at joint
 • Brittle; small-diameter pipe subject to cracking from frost-heaves or displacement
 • Graphitization (corrosion)

▸ Bare Steel (generally <15 bar, 200 psi)
 • General corrosion
 • Pitting

▸ Replacement costs
 • $1MM to >$8MM, depending on location
 • Extended pipe replacement schedules

▸ Current Options
 • Excavation
 – Replace with plastic (remove old pipe or abandon in place)
 – External wraps
 – Couplings
 • “Trenchless Technologies”
 – Keyhole repair (can be on-line)
 – Plastic pipe bursting
 – Plastic pipe insertion
 – CIPP Liners
 – MICP
 – CISBOT (on-line)
Example Commercially Available Technologies

- Clamps
- Wraps
- Pipe Bursting
- Slip-lining

- Keyhole encapsulation
- CIPP liner
- MICP
- CISBOT
Potential TRL 5 Deliverables

- Composite “Pipe-in-Pipe”
 - Live pipe, 15 m/hr rate, 800 m reach,
- Inspection tools
 - Original pipe, minimal cleaning
 - Integrity tests for composite layer
 - Future testing for composite and outer pipe
 - Real-time data with visualization to support field operations
 - 3D map with integrity data to support LDC engineering
- Test protocols
 - Link mechanical properties, test methods, models, and inspection tools to validate 50+ years life
- Path to rate-base authorization for costs
What Puts REPAIR on a Disruptive Technology Curve?

- Repair while pipe in service
- Speed
- Distance
- New robotic functionality
- Smart composite coating
- Orthogonal integrity tools
- Testing protocols
- Integrate pipeline mapping, coating data, integrity measurements
- Cost and Performance
Who Do We Need

- Technical Steering Committee
- Regulators and Utilities

Specifications

- Performance tests and modeling

Commercial Offers

- Service Companies

Processes and methods

System Components
- Robots
- Composites
- Integrity tools
- Data visualization/management

Performance Metrics
Workshop Goals

- Level-set on current state of art
- Introduce developments outside pipe domain
- Identify technical and regulatory hurdles
- Stimulate new concepts, approaches
- Address your questions
- Provide input to refine Funding Opportunity Announcement
- Foster networking among participants
Critical Questions To Answer

› Breakout Session #1: Success Metrics and Component Capabilities

- What will be the toughest technical challenges for the system components – robots, composite materials, integrity inspection?

- What are various options for component testing? Integrated system testing? Please comment on accessibility, cost, capabilities, and any gaps?

- What is the most important criteria for the technology to be deemed successful?

- “The envisioned program has assumed a system solution involving a robot and composite material. Are there other high-risk, high-reward system solutions or components that we would miss with this construct?
Critical Questions To Answer

- Breakout Session #2: Data Management/System Level Solutions
 - What data will be needed from each of the system components - robots, inspection tools, coating equipment – to ensure:
 - Lowest-cost alternative technology
 - Minimum life >50 years
 - Regulatory approval
 - What are the challenges for making integrity testing and coating QA/QC data available real-time?
 - How can component developers and system providers collaborate to expedite commercialization of the best innovations?