

REPAIR Workshop Overview

<u>Rapid Encapsulation of Pipelines Avoiding</u> Intensive <u>Replacement</u> (REPAIR)

October 10th, 2019 Washington, D.C.

Jack Lewnard, Program Director ARPA-E jack.lewnard@hq.doe.gov

REPAIR Development Team

Jack Lewnard Program Director ARPA-E

Patrick McGrath Deputy Director of Technology ARPA-E

Sade Ruffin Tech SETA Booz Allen Hamilton

Dipanker Sahoo T2M SETA Booz Allen Hamilton

Mark Pouy Tech SETA Booz Allen Hamilton

REPAIR Workshop ARPA-E and Booz Allen Hamilton Staff

Lane Genatowski Director ARPA-E

Jennifer Gerbi Associate Director for Technology ARPA-E

Joseph King Program Director ARPA-E

Scott Litzelman Program Director ARPA-E

David Tew Program Director ARPA-E

Geoffrey Short Tech SETA Booz Allen Hamilton

Danielle Weingarten Event Planner Booz Allen Hamilton

REPAIR Fit With ARPA-E Mission

- Natural gas provides 31% of US primary energy, serves 70 MM homes, 5 MM commercial customers
- Abundant and affordable domestic energy resource
- Pipeline infrastructure repair/rehabilitation spending >\$3B/year across all sectors
- Novel rehabilitation technologies touch material science, chemistry, physics, robotics, data analytics, etc.

Gas Distribution 101

- Gas utilities start ~mid-1800's
- Low-pressure "Town gas" from coal
- Wrought iron pipe, joined by couplings, through early 1900's
- Cast iron pipes joined with bell/spigot and packing, through 1950's
- Transition to natural gas in 1940's and (bare) steel in 1950's
- Transition to plastic pipe in 1960's
- Continuous investment to upgrade infrastructure; more than 60,000 miles of cast iron and bare steel have already been replaced

Issues and Options

- Cast Iron (<2 bar, 35 psi pressure)</p>
 - Leaks at joint
 - Brittle; small-diameter pipe subject to cracking from frost-heaves or displacement
 - Graphitization (corrosion)
- Bare Steel (generally <15 bar, 200 psi)</p>
 - General corrosion
 - Pitting
- Replacement costs
 - \$1MM to >\$8MM, depending on location
 - Extended pipe replacement schedules

- Current Options
 - Excavation
 - Replace with plastic (remove old pipe or abandon in place)
 - External wraps
 - Couplings
 - "Trenchless Technologies"
 - Keyhole repair (can be on-line)
 - Plastic pipe bursting
 - Plastic pipe insertion
 - CIPP Liners
 - -MICP
 - CISBOT (on-line)

Example Commercially Available Technologies

Clamps

Wraps

Pipe Bursting

Slip-lining

Keyhole encapsulaiton

CIPP liner

MICP

CISBOT

Potential TRL 5 Deliverables

- Composite "Pipe-in-Pipe"
 - Live pipe, 15 m/hr rate, 800 m reach,
- Inspection tools
 - Original pipe, minimal cleaning
 - Integrity tests for composite layer
 - Future testing for composite and outer pipe
 - Real-time data with visualization to support field operations
 - 3D map with integrity data to support LDC engineering
- Test protocols
 - Link mechanical properties, test methods, models, and inspection tools to validate 50+ years life
- Path to rate-base authorization for costs

What Puts REPAIR on a Disruptive Technology Curve?

- Repair while pipe in service
- Speed
- Distance
- New robotic functionality
- Smart composite coating
- Orthogonal integrity tools
- Testing protocols
- Integrate pipeline mapping, coating data, integrity measurements
- Cost and Performance

Who Do We Need

Workshop Goals

- Level-set on current state of art
- Introduce developments outside pipe domain
- Identify technical and regulatory hurdles
- Stimulate new concepts, approaches
- Address your questions
- Provide input to refine Funding Opportunity Announcement
- Foster networking among participants

Critical Questions To Answer

- Breakout Session #1: Success Metrics and Component Capabilities
 - What will be the toughest technical challenges for the system components robots, composite materials, integrity inspection?
 - What are various options for component testing? Integrated system testing? Please comment on accessibility, cost, capabilities, and any gaps?
 - What is the most important criteria for the technology to be deemed successful?
 - "The envisioned program has assumed a system solution involving a robot and composite material. Are there other high-risk, high-reward system solutions or components that we would miss with this construct?

Critical Questions To Answer

- Breakout Session #2: Data Management/System Level Solutions
 - What data will be needed from each of the system components robots, inspection tools, coating equipment – to ensure:
 - Lowest-cost alternative technology
 - Minimum life >50 years
 - Regulatory approval
 - What are the challenges for making integrity testing and coating QA/QC data available real-time?
 - How can component developers and system providers collaborate to expedite commercialization of the best innovations?

