Toward deployment of MIT SRR controller in Pecan Street, Austin, TX: Progress and next steps

© Marija Ilic, Rupamath Jaddivada, Michelle Lauer

ilic@mit.edu

NODES PROGRAM REVIEW MEETING,
Pasadena, CA
February 13, 2019
Outline

- Motivation

- Project Innovations
 - Technology-agnostic Synthetic Regulation Reserve (SRR) device controllers
 - Integrated NODES-level control
 - Patented Synthetic Regulation Reserve Provisioning System (SRPS)
 - Scalable distributed simulation platform

- Small-Medium Scale (SMS) simulation validation on Pecan Street
- Implementation plan for retrofitting of existing control in Pecan Street
- AI-enabled device consumption predictions to assist predictive control implementation for synthetic regulation reserves (SRR) provision
- DyMonDS-enabled secure block chain design
Potential benefits of NODES

- Excessive renewable penetration
- Excessive wear and tear

Value of fast flexible end-user response with excessive renewable penetration

Performance metrics set for NODES category – II of synthetic regulation reserves in Pecan street

7% of net load

Reserve Magnitude Variability Tolerance

≤ 5% RMT

5 seconds 5 minutes 30 minutes (95% availability)
Typical neighborhood and its aggregation by NODES
Generalized droops for device-level energy flows [2]

DER as a distributed decision maker

DER i ∈ Node I

\[
\min \sum \lambda^l[k] P_{Di}[k] - \lambda^r[k] B_{Di}[k]
\]

Technology-agnostic device-level controllers

\[
\Delta W_{i}^{\text{min}} [k] T_t \leq \dot{W}_{i}^{\text{min}} [k] T_t \leq \Delta W_{i}^{\text{max}} [k] T_t
\]

Limits on comfort requirement/physical controller limits

Energy and reserve prices within Node I

\[\lambda^l[k], \lambda^r[k]\]

Generalized flexibility constraints

Consumption dispatch signal

\[\Delta P_{Di}[k]\]

SRR signal

\[\Delta P_{Di}[n]\]

Exogenous Consumption

DER Controller Implementation

Simulated DER
MIT NODES aggregation algorithm

System energy and reserve prices
\[\lambda^S_e[k], \lambda^S_r[k] \]

Inflexible demand and bounds on its deviation predictions within Node I
\[\Delta P^u_I[k], \hat{B}^u_I[k] \]

Aggregate Energy and Reserve bids
\[\Delta P_{DI}[k], B_{DI}[k] \]

\[
\begin{align*}
\min_{\Delta P_{DI}[k], B_{DI}[k]} & \quad \sum_k \lambda^S_e[k] P_{DI}[k] - \lambda^S_r[k] B_{DI}[k] \\
\sum_{i \in I} \Delta P_{Di}^{\text{min}}[k] & \leq \Delta P_{DI}[k] - \Delta \hat{P}_I^u[k] \leq \sum_{i \in I} \Delta P_{Di}^{\text{max}}[k] \\
\sum_{i \in I} B_{Di}^{\text{min}}[k] & \leq B_{DI}[k] - \hat{B}_I^u[k] \leq \sum_{i \in I} B_{Di}^{\text{max}}[k]
\end{align*}
\]

DER minimum and maximum limits of each \(i \in I \)
\[\Delta P_{Di}^{\text{min}}[k], \Delta P_{Di}^{\text{max}}[k], B_{Di}^{\text{min}}[k], B_{Di}^{\text{max}}[k], \]
NODES-level decision making for clearing energy and reserve capacity bids of DERs

Node I

\[
\min \sum_{k=1}^{6} \left[\sum_{i \in S_N} C_i^e (P_{Di}[k]) + C_i^r (B_{Di}[k]) \right]
\]

\[
\Delta P_{Di}[k], B_{Di}[k] \]

\[
\Delta P_{Di}[k] - \sum_{i \in I} \Delta P_{Di}[k] - \Delta P_{Di}^u[k] = 0
\]

\[
B_{Di}[k] - \sum_{i \in I} B_{Di}[k] - \hat{B}_{Di}^u[k] \geq R_{\text{margin}}
\]

\[
\Delta P_{Di}^{\min}[k] \leq \Delta P_{Di}[k] \leq \Delta P_{Di}^{\max}[k]
\]

\[
B_{Di}^{\min}[k] \leq B_{Di}[k] \leq B_{Di}^{\max}[k]
\]

\[
\forall i \in I
\]

Cleared Energy and Reserve capacity prices within Node I

\[
\lambda^I_e[k], \lambda^I_r[k]
\]

DER bids with minimum and maximum limits for each \(i \in I \)

\[
C_i^e, C_i^r,
\]

\[
\Delta P_{Di}^{\min}[k], \Delta P_{Di}^{\max}[k],
\]

\[
B_{Di}^{\min}[k], B_{Di}^{\max}[k],
\]

\[
\Delta P_{Di}[k], B_{Di}[k]
\]

DER Energy and Reserve capacity Dispatch

Node level dispatched quantity \(\Delta P_{I}[k], B_{I}[k] \)
MIT SRPS algorithm embedded in NODES

Node level synthetic regulation reserve
dispatch/ AGC Signal $\Delta P_I[n]$

Integrated approach to computing device/house specific SRR signals

$\Delta P_{Di}[n] - \sum_{i \in I} \Delta P_{Di}[n] - \Delta P^u_I[n] = 0$

$\Delta P_{Di}[n] \leq B_{Di}[k]$

Fast time scale Inflexible demand predictions $\Delta \hat{P}^u_I[n]$

DER Reserve
$\Delta P_{Di}[n]$ Dispatch
MIT SRPS platform [3]

[3] Ilic, M. and Jaddivada, R., Methods and systems for secure scheduling and dispatching synthetic regulation reserve from distributed energy resources, Utility patent Application No. 16/206,009, Filed on November 30, 2018
Setting for Small-Medium scale simulation validation

Tested for 10 scenarios each of tracking:
- a step reserve request signal equal to 7% of load at that hour
- AGC signal created using Monte-Carlo simulations of different renewable penetration levels
Sample Test 1: 75 water heaters and 25 EVs to track a ‘regulation-up’ signal of 214.5 KW:
Sample Test 2: 50 water heaters and 50 EVs to track AGC signal at 2AM.
Implementation plan for deploying DyMonDS-enabled SRPS

Task group 1: SRR house-level predictor

1.1. Device-specific predictions (for aiding ctrl interface)
1.2. House-level predictions (for aiding market interface)
1.3. Feeder-level predictions

Task group 2: SRR device-specific control algorithm

2.1. Embedding developed SRR device control algorithms
2.2. Converting analog control to digital ON.OFF signals to be sent through Pecan APIs

Task group 3: NODES algorithms deployment at

3.1. Each of the 50 simulated house instances
3.2. Simulated NODES instance

Task group 4: Whole sale level

Option 1: ERCOT Market simulation
Option 2. Feeder-level AGC signal creation through historical data of ERCOT
Progress with the implementation & Next steps

❖ Task-group 1: Prediction modules
 ▪ Showed the power of AI-enabled tools for house-level predictions
 ▪ Compared the statistical and AI-enabled methods
 ▪ Existing consumption models are being retrofitted with these new modules

❖ Task-group 2: Device-level control modules
 ▪ Have already constructed the control modules for use in SMS simulation validation
 ▪ Conversion of the analog signals to digital ON/OFF signals to communicate to Pecan is work in progress
Progress with the implementation & Next steps

❖ Task-group 3: NODES-level control modules
 ▪ Completed construction of algorithms for aggregation and dispatch
 ▪ Feeder-level prediction models to be integrated with the NODES-level control algorithms
 ▪ Exploring the possibility of implementing secure blockchain

❖ Task-group 4: End-end market simulation
 ▪ Exploring the possibility of utilizing AI-enabled tools for predicting the feeder-level signals
Recent progress: Stochastic and AI-enabled tools for house-level predictions [4]

Considered error Metrics:
• Mean Absolute Error (MAE) = \(\frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j| \)
• Mean Square Error (MSE) = \(\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2 \)

AI Methods tested:
• Random-forest (RF): with maximum depth of 10 levels
• Multi-layer perceptron (MLP)
• Support Vector Regression (SVR)

Extrinsic parameters
• Explicitly supplied in stochastic models
• Learning in machine-learning methods

Stochastic models for house-level predictions of Pecan 15-minute load (June 2016) [4]

Mean house-level energy consumption (KW-15min)

Period-number (15-minute length) of the day

Transition matrix assuming 6 states of the mean energy consumption

\[
\begin{bmatrix}
10 & 6 & 1 & 0 & 0 & 0 \\
6 & 6 & 4 & 0 & 0 & 0 \\
0 & 3 & 7 & 3 & 3 & 0 \\
0 & 1 & 3 & 7 & 5 & 0 \\
0 & 0 & 0 & 6 & 5 & 4 \\
0 & 0 & 1 & 0 & 3 & 12
\end{bmatrix}
\]

Diagonal dominance indicating the likelihood of the consumption to stay in the same state for consecutive time periods
Performance of the stochastic models with different number of assumed states [4]

Mean house-level energy consumption (KW-15min)

Period-number (15-minute length) of the day

- 3 states
- Observed
- Simulated

- 12 states

- 24 states
Comparison of the baseline persistent models against machine learning methods [4]

Features considered:

<table>
<thead>
<tr>
<th>feature</th>
<th>RF importance (H1)</th>
<th>RF importance (H2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature</td>
<td>0.0148</td>
<td>0.0106</td>
</tr>
<tr>
<td>dew_point</td>
<td>0.0085</td>
<td>0.0068</td>
</tr>
<tr>
<td>humidity</td>
<td>0.0066</td>
<td>0.0057</td>
</tr>
<tr>
<td>apparent temperature</td>
<td>0.0181</td>
<td>0.0094</td>
</tr>
<tr>
<td>pressure</td>
<td>0.0096</td>
<td>0.0060</td>
</tr>
<tr>
<td>wind_speed</td>
<td>0.0088</td>
<td>0.0062</td>
</tr>
<tr>
<td>cloud_cover</td>
<td>0.0046</td>
<td>0.0020</td>
</tr>
<tr>
<td>precip_probability</td>
<td>0.0171</td>
<td>0.0021</td>
</tr>
<tr>
<td>sin_hour</td>
<td>0.0055</td>
<td>0.0104</td>
</tr>
<tr>
<td>cos_hour</td>
<td>0.0024</td>
<td>0.0017</td>
</tr>
<tr>
<td>sin_minute</td>
<td>0.0039</td>
<td>0.0073</td>
</tr>
<tr>
<td>cos_minute</td>
<td>0.0016</td>
<td>0.0096</td>
</tr>
<tr>
<td>sin_dayofyear</td>
<td>0.0073</td>
<td>0.0083</td>
</tr>
<tr>
<td>cos_dayofyear</td>
<td>0.0085</td>
<td>0.0077</td>
</tr>
<tr>
<td>dayofweek_0</td>
<td>0.00035</td>
<td>0.000528</td>
</tr>
<tr>
<td>dayofweek_1</td>
<td>0.000766</td>
<td>0.000237</td>
</tr>
<tr>
<td>dayofweek_2</td>
<td>0.000405</td>
<td>0.000542</td>
</tr>
<tr>
<td>dayofweek_3</td>
<td>0.000478</td>
<td>0.000291</td>
</tr>
<tr>
<td>dayofweek_4</td>
<td>0.00114</td>
<td>0.000273</td>
</tr>
<tr>
<td>dayofweek_5</td>
<td>0.000411</td>
<td>0.000359</td>
</tr>
<tr>
<td>dayofweek_6</td>
<td>0.000806</td>
<td>0.000503</td>
</tr>
<tr>
<td>1_intervals_before</td>
<td>0.713</td>
<td>0.740</td>
</tr>
<tr>
<td>2_intervals_before</td>
<td>0.0138</td>
<td>0.0224</td>
</tr>
<tr>
<td>3_intervals_before</td>
<td>0.0234</td>
<td>0.0151</td>
</tr>
<tr>
<td>4_intervals_before</td>
<td>0.0255</td>
<td>0.0159</td>
</tr>
<tr>
<td>5_intervals_before</td>
<td>0.0204</td>
<td>0.0188</td>
</tr>
<tr>
<td>6_intervals_before</td>
<td>0.0151</td>
<td>0.0124</td>
</tr>
<tr>
<td>7_intervals_before</td>
<td>0.0256</td>
<td>0.0166</td>
</tr>
<tr>
<td>1_days_before</td>
<td>0.00172</td>
<td>0.00323</td>
</tr>
<tr>
<td>2_days_before</td>
<td>0.00236</td>
<td>0.00356</td>
</tr>
<tr>
<td>3_days_before</td>
<td>0.00285</td>
<td>0.00302</td>
</tr>
<tr>
<td>4_days_before</td>
<td>0.00219</td>
<td>0.00288</td>
</tr>
<tr>
<td>5_days_before</td>
<td>0.00346</td>
<td>0.00358</td>
</tr>
<tr>
<td>6_days_before</td>
<td>0.00315</td>
<td>0.00270</td>
</tr>
<tr>
<td>7_days_before</td>
<td>0.00267</td>
<td>0.00307</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MAE</th>
<th>MSE</th>
<th>Size(bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSS</td>
<td>0.370</td>
<td>0.475</td>
<td>8</td>
</tr>
<tr>
<td>Stat</td>
<td>0.410 (+1.11%)</td>
<td>0.449 (-5.47%)</td>
<td>1.11e5</td>
</tr>
<tr>
<td>RF</td>
<td>0.344 (-7.03%)</td>
<td>0.315 (-33.7%)</td>
<td>8.36e5</td>
</tr>
<tr>
<td>MLP</td>
<td>0.350 (-5.41%)</td>
<td>0.333 (-29.9%)</td>
<td>7.89e4</td>
</tr>
<tr>
<td>SVR</td>
<td>0.354 (-4.32%)</td>
<td>0.350 (-26.3%)</td>
<td>8.40e5</td>
</tr>
</tbody>
</table>

TABLE I

EXPERIMENTAL RESULTS FOR HOUSEHOLD-LEVEL PREDICTION

- 70% of the data used to train the model and the rest is used as testing data.
- All the ML methods outperform baseline method
- ML methods need several orders of magnitude larger memory requirement compared to the baseline.
- Statistical models can not appropriately model the periodicity of data when it is noisy, but the ML methods implicitly do consider the periodicity involved.
Secure DyMonDS-enabled blockchain design [4,5]

Minimal information exchange framework made possible by energy-based interactive modeling and control design of DERs [6]

Snapshot of blockchain ledger [4,5]

- Relies on the trust among the different NODES
- Blockchain is used as a shared database with protected read-write capabilities
- The data stored is at multiple NODES, thus is not at a risk of single point of failure
- Peer-to-peer learning-enabled validation is implemented to verify the logs before they get synchronized into the respective ledger copies
- Incorporating DyMonDS framework results in lesser memory requirement in the ledgers
Published Papers:

Patents:

- Ilic, M. and Jaddivada, R., Methods and systems for secure scheduling and dispatching synthetic regulation reserve from distributed energy resources, Utility patent Application No. 16/206,009, Filed on November 30, 2018
Accepted and submitted papers:

Working papers:

THANK YOU

Questions?

This material is based upon work supported by the Department of Energy and Department of the Navy under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of Energy and Department of the Navy.

© 2018 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.