



#### TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

## **Small Tactical Electric Power**

**Technology Advancement – Application - Transition** 

Selma J. Matthews CERDEC CPI Power Division 21 OCTOBER 2015



Agenda



- Capability Gaps Quantifying / Describing Issues
  - Observations Commercial Sector vs Tactical Battlefield
  - Army Challenges
- Technology Investments
  - Operational Goals
  - Measures of Effectiveness
  - Design Metrics
- CERDEC S&T
  - Investments
  - Hardware Delivered
  - Metrics Developed
  - Technology Transition to PM E2S2
- Technology Trends Future Investments



## Power & Energy Observations



### Commercial



Increased Urbanization & Population







### **Consumption of energy increasing**

- New C4ISR technologies
- IED Defeat Systems
- New weapons (EM guns, lasers)

### **Energy security problematic**

- Cost of fuel skyrocketing
- Politics
- Alternative sources wind, solar, waste to energy

### **Operational issues**

- Wet stacking and increased maintenance
- Need for increased mobility
- Energy Density Battery usage & limitations
- Emphasis on silent ("quiet") watch
- Emphasis on energy efficiency
- Inefficient management/ distribution of power
- Need for remote start hybrid sources

#### Increased emphasis on system power metrics

(low consumption components)

## Tactical Battlefield

DoD centric









# ARMY (ASA-ALT) TOP CHALLENGES



- Greater *force protection (Soldier, vehicle, base)* to ensure survivability across all operations
- Ease overburdened Soldiers in Small Units
- Timely *mission command & tactical intelligence* to provide situation awareness and communications in all environments
- Reduce logistic burden of *storing, transporting, distributing* and *retrograde* of materials
- Create *operational overmatch* (enhanced lethality and accuracy)
- Achieve operational *maneuverability* in all environments and at *high operational tempo*
- Enable ability to operate in CBNRE environment
- Improve early detection of traumatic brain injury (TBI)
- Improve *operational energy*
- Improve individual & team training
- *Reduce lifecycle cost* of future Army capabilities

#### **OE Desired Capabilities**

- Increased Platform Fuel Efficiency
- Lighter, more powerful Soldier power sources
- Reduced Logistics Demand
- Energy-efficient structures and devices

#### **OE Technology Enablers**

- Advanced turbine engines
- High efficiency drive systems
- Electrochemical power sources for longer lasting power
- Wearable Power (fuel cells, new battery chemistries, energy harvesting, distribution) and recharging capability for improved mobility
- Intelligent power management
- Waste to energy conversion
- Energy loss models and management tools
- Alternative energy to reduce logistics
- Power Generators with multi-fuel use
- Materials and design of energy efficient structures





#### **OPERATIONAL ENERGY STRATEGY**

- 1. More fight, less fuel: Reduce the demand for energy
- 2. More options, less risk: Expand and secure the supply of energy to military operations.
- 3. More capability, less cost: Build energy security into future force.



ARMY NET ZERO ENERGY STRATEGY for base camps and installations



## **ARMY GOALS / OBJECTIVES**



## <u>Goal</u>

- To establish a new family of tactical electric, soldier portable, signature suppressed power systems in the 500 – 2000 Watt range
  - That enable direct power and hybrid, silent watch, and battery charging applications in the forward tactical battlefield areas.
  - That increase the operational flexibility of the battle commander
- To take advantage of emerging solutions from applied and advanced research initiatives that show promise in making dramatic improvements on logistics, cost, and mission capability for all services

## **Objectives**

- Reduce Weight / Size
- Improve Reliability
- Reduce Total Ownership Costs
- Enhance / Increase Platform Capability



UNCLASSIFIED

## MEASURE OF EFFECTIVENESS



### TACTICAL ELECTRIC POWER CAPABILITIES PRODUCTION DOCUMENT approved Jun 2011

Man Power Burden Supportability Scalability Impact on O&S Costs

| Key Performance<br>Parameters                    | ARMY Metric                                                                   |
|--------------------------------------------------|-------------------------------------------------------------------------------|
| KPP#1.<br>System Power Quality,<br>Sizes & Modes | <b>05 – 3.0 kW</b><br>50 / 60 Hz<br>Utility Class 2C<br>per<br>MIL-STD-1332B. |
| KPP#2.<br>System Weight.<br>(dry)                | Reduce by average<br>of 25%                                                   |
| KPP#3.<br>Fuel Consumption                       | Reduce by 25%                                                                 |
| KPP#4.<br>Reliability &<br>Maintainability       | MTBF: 500 hr<br>Median Time to<br>Repair: $\leq 0.5$<br>hours                 |



**KEY PERFORMANCE** 



## PARAMETERS

| Key Performance<br>Parameters                    | ARMY Metric                                                                   | 2-3 kW DED<br>MTG/TQG<br>ARMY S&T<br>PROOF OF CONCEPT –<br>Deliverables at TRL 6/7                                                                                    |                                                                                                                                                                                                                           | BREAKTHROUGH /<br>APPROACH                                                                                                                                                                               |
|--------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KPP#1.<br>System Power Quality,<br>Sizes & Modes | <b>05 – 3.0 kW</b><br>50 / 60 Hz<br>Utility Class 2C<br>per<br>MIL-STD-1332B. | <b>2 kW</b> :<br>28 V <sub>DC</sub><br>120 V <sub>AC</sub> , 1 Φ, 3 wire<br><b>3 kW</b> :<br>120 V <sub>AC</sub> , 1 Φ, 3 wire<br>120/240 V <sub>AC</sub> 1 Φ, 4 wire | <ul> <li>0.5 / 1.0 / 2.0 / 3.0 kW<br/>Switch selectable</li> <li>28 V<sub>DC</sub></li> <li>120 V<sub>AC</sub>, 1 Φ, 3 wire</li> <li>120/240 V<sub>AC</sub> 1 Φ, 4 wire<br/>w/ GFCI convenience<br/>receptacle</li> </ul> | <ul> <li>Fuel Processing Techniques<br/>/ Combustion Augmentation</li> <li>Power Electronic Controls</li> <li>Advanced Materials</li> </ul>                                                              |
| KPP#2.<br>System Weight.<br>(dry)                | Reduce by average of 25%                                                      | 2 kW 123.5 lb<br>3 kW 304.0 lb                                                                                                                                        | 0.5 kW 35 lbs<br>1.0 kW 50 lbs<br>2.0 kW 100 lbs<br>3.0 kW 150 lbs                                                                                                                                                        | <ul> <li>Use of Nanomaterials for<br/>thermal management</li> <li>Adaptation of COTS power<br/>components / systems</li> </ul>                                                                           |
| KPP#3.<br>Fuel Consumption                       | Reduce by 25%                                                                 | 2.0 kW 0.33 gal/hr<br>3.0 kW 0.33 gal/hr                                                                                                                              | 0.5 kW 0.12 gal/ hr<br>1.0 kW 0.20 gal/hr<br>2.0 kW 0.26 gal/hr<br>3.0 kW 0.28 gal/hr                                                                                                                                     | <ul> <li>Advanced materials</li> <li>Combustion Augmentation</li> <li>Automatic load following<br/>controls</li> <li>On-board preconditioning fuel<br/>processor to enable multi-fuel</li> </ul>         |
| KPP#4.<br>Reliability &<br>Maintainability       | MTBF: 500 hr<br>Median Time to<br>Repair: $\leq 0.5$<br>hours                 | MTBF:<br>2.0 kW 818 hr<br>3.0 kW 500 hr                                                                                                                               | TBD<br>MTBF: 750 hr - goal                                                                                                                                                                                                | <ul> <li>Integrated thermal<br/>management</li> <li>Electronic Controls to ensure<br/>greater precision/stability in<br/>governing engine speed</li> <li>Controls for part load<br/>operation</li> </ul> |



**CERDEC S&T SUMMARY** 



#### **BENEFITS ASSOCIATED WITH THE APPLICATIONS OF BREAKTHROUGHS**

#### **R&D** Nanomaterials

- Thermal Management
- Advanced Materials

CarbAl<sup>™</sup> composite



- Reduction in Operating Temperature
- Reduction of Overall Package Size
- Increase in System Efficiency



- Low Coefficient of Thermal expansion
- Thermal Properties as good or better than Copper
- Lighter weight than Aluminum
- Easily Integrated into Existing Systems

Increased Reliability Survivability & Efficiency

 Direct Print Circuits with Integrated Thermal Management:

Combine CarbAl<sup>™</sup> with Advanced circuit assembly

- Reduction in overall Thermal Impedance
- Integration of Thermal Management at the Circuit Board Level
- Reduced Component Temperatures
- Smaller Heat sinks = Weight Reductions
- Compatible with high-efficiency Inverters



CERDEC S&T Summary (con't)



#### **BENEFITS ASSOCIATED WITH THE APPLICATIONS OF BREAKTHROUGHS**

#### **R&D Power Electronics:**

• Engine/Generator Controls:

Controls alternator output, metering of fuel, Load Sensing

- Reduction in Fuel Consumption
- Reduction in Total Ownership Cost
- Reduction of Wet Stacking



#### **R&D** Alternator:

• Alternative Material: Rare Earth Free Magnet

High Temperature Tolerance Reduction in I<sup>2</sup>R losses Lighter Weight

- - Robust, durable and cost effectiveReduction in component costs

Readily available in US / globally

#### Increased

- Efficiency
- Affordability
- Availability
- Reliability

Parallel Path Magnetic Technology

Conventional construction More useable flux from same magnet Performance equal to or better than PMG design Compatibility w/ advanced Engine &

Power Electronic Designs - TBD

- Drop in mechanically.
- Standard manufacturing techniques





## CERDEC S&T Summary (con't)



### **BENEFITS ASSOCIATED WITH THE APPLICATIONS OF BREAKTHROUGHS**

#### **R&D Combustion Enhancement Techniques**

- Operational compatibility with Logistic Fuels
   Electronic Fuel Injection
   Fuel Reformation
   Fuel Conditioning
- Easy Use of COTs based Balance of Plant components

#### **R&D Alternative Prime Movers**

- Reduced Noise and IR signature
- Lower Emissions
- Low Vibration
   Increased Life



- Reduction in Total Ownership Cost
- Reduction of Wet Stacking

- Increases Operational Flexibility
- Fills Power Gap
- Availability
- Survivability

- Reduction in Maintenance
- Negligible Wet Stacking



12

### Efficient JP-8 compatible 500W - 1.5 kW Watt Power Systems

 Design and prototype an ultra-compact (1/2 C-cell size) JP-8 conversion kit to enables a lightweight SI engine to operate on JP-8/DF-2.

### ultra Lightweight Field Generator Set (uLFG), 1 – 2kW

DEGON

· Combine recent advances in small heavy fueled UAV engines with advanced hybrid power electronics to create a multi-fueled (JP-8/DF-2) portable genset featuring selectable DC output and load following capability.

#### Advanced Small, Lightweight Multi-Fueled 1 – 3.0 kW Variable **Speed Load Following Man-Portable Power Unit**

- Design, develop and demonstrate an advanced small, lightweight man-portable multi-fueled variable speed generator set that is capable of providing 1 - 1.5 kW of 120  $V_{AC}$  and 28  $V_{DC}$  via selectable switch.
- Leverage advancements in UAV, small lightweight IC engines, fuel conditioning techniques, composite materials for packaging, start of the art alternators and power electronics, and thermal management.

# **RESULTS OF ARMY S&T SYSTEM INVESTMENTS**













# RESULTS OF ARMY S&T SYSTEM INVESTMENTS



#### **Stirling Engine Development**

RDECOM

- Integrated 2-kWe JP-8 or DF-2 Fueled, External Combustion Power Source
- Addressed thermal management / heat transfer to augment combustion

#### **Migrating Combustion Chamber Engine Development**

- Integrated 2-kWe JP-8 or DF-2 Fueled Power Source
- High Power Density 47 pound system (dry)
- 120 Vac / 28 Vdc Controls

### **Tubular SOFC**

- Designed to TQG size and weight with targeted efficiency of > 30% with the potential for water export.
- Scalable to meet size/weight limits of current 3 kW TQG.
- Leverages fuel conditioning / reformation techniques to enable start, stop, operation on JP-8 fuel.
- Deliverable demonstrates silent operation, interfaces with renewable energy based systems, very low emissions.









### 3 kW Rare Earth Free Alternator

- Design 17% 20% lighter alternator using "high energy" ferrite magnets with very low lanthanum content.
- Integrate onto 3 kW TQG to demonstrate compliance with operational / performance requirements

### Nanotechnology Enabled Thermal Management Materials for Power Electronics on a 3kW TQG.

• Using carbon-aluminum nanocomposite materials to replace existing circuit board base for electronics cooling, size reduction, and increase reliability.

### **Heuristic Generator**

RDECOM

- Develop system to monitor operational characteristics of 10 kW genset such as fuel and oil levels, status of filters, generator electrical quantities, & vibration.
- Learns normal operation and will detect deviations to initiate repair or anticipate and avert imminent malfunction

# S&T INVESTMENTS COMPONENTS / SUBSYSTEM











**S&T METRICS - ELECTRICAL** 



| ELECTRICAL                                   |                                                              |  |
|----------------------------------------------|--------------------------------------------------------------|--|
| Standard                                     | MIL STD 1332B Class 2C                                       |  |
| Output Power                                 | 500 - 3000 Watts                                             |  |
|                                              | 120 V <sub>AC</sub> , single phase 3 wire                    |  |
|                                              | with GFCI convenience receptacle                             |  |
|                                              | 120/240 V <sub>AC</sub> 4 wire                               |  |
| Output Voltage                               | with GFCI convenience receptacle                             |  |
|                                              | 28 Vdc                                                       |  |
|                                              | 3-way selectable power outputs of AC only, DC only,          |  |
|                                              | or simultaneous AC & DC                                      |  |
| Rated Power Factor                           | 0.8                                                          |  |
| Voltage Regulation                           | 3%                                                           |  |
| Frequency                                    | 60 <u>+</u> 0.06 Hz                                          |  |
| Waveform Deviation                           | 5%                                                           |  |
| Harmonic Distortion                          | 2%                                                           |  |
| Denetien                                     | Rated load at 4000 ft 95 ° F                                 |  |
| Defation                                     | <23% at 8000 ft 95 ° F                                       |  |
|                                              | Variable speed option - minimize wet stacking and            |  |
| Power Electronics                            | reduce fuel consumption                                      |  |
|                                              |                                                              |  |
| Start                                        | < 5 min with or without battery under all                    |  |
| Start<br>(Dull Stort, required as back up to | environmental conditions noted in next section               |  |
| Flectric start)                              | Pull start at – 10°C (14 F) with no assist (for $\leq$ 2 kW) |  |
|                                              | Electric Start at -25 °F required for 3 kW                   |  |



## **S&T METRICS - PHYSICAL**



| PHYSICAL            |                                                                                                                                     |     |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----|
| Fuel                | Hot Swappable, Multi fuel capable - JP-8 / DF-2 / Gasoline, compatible with operation on mixed fuels                                |     |
| Fuel Consumption    |                                                                                                                                     |     |
| 0.5 kW              | 0.12 gal/ hr (0.45 liters / hr)                                                                                                     |     |
| 1.0 kW              | 0.2 gal/hr (0.76 liters/hr)                                                                                                         |     |
| 2.0 kW              | 0.26 gal / hr (0.98 liters / hr)                                                                                                    |     |
| 3.0 kW              | 0.28 gal/hr (1.06 liters/hr)                                                                                                        |     |
| Drain               | Fuel / Oil                                                                                                                          |     |
| External Fuel Tank  | Stand alone, remote op capability                                                                                                   |     |
|                     | 500 W: 35 lbs                                                                                                                       |     |
| Day Waight          | 1000 W: 50 lbs                                                                                                                      |     |
| Dry weight          | 2000 W : 100 lbs                                                                                                                    |     |
|                     | 3000 W: 150 lbs                                                                                                                     |     |
| Protection Circuits | Voltage, Frequency, Overload, Short Circuit, etc.)                                                                                  |     |
| Reliability         | 750 hrs MTBF                                                                                                                        |     |
| Life / Durability   | 2500 - 3500 hours with multiple start/stops with multiple fuels and fuel quality (i.e. mixed fuel; varying fuel sulfur levels; etc) |     |
| Repair Time         | TBD                                                                                                                                 | : F |





| ENVIRONMENTAL               |                                                                              |  |
|-----------------------------|------------------------------------------------------------------------------|--|
| EMI / EM compatibility      | MIL-STD-461E - Army ground                                                   |  |
|                             | < 62 dBA @ 7m                                                                |  |
| Audible Noise               | 70 dBA at 0.9 m                                                              |  |
| Operating Temp              | -32 C to 59 C (-25 F to 138 F)                                               |  |
| Storage Temp                | -51 C to 71 C (-60 F to 160 F)                                               |  |
| Solar Loading               | Up to 355 BTU/ft <sup>2</sup> solar radiation                                |  |
| Wind                        | Gusts to 95 ft/s                                                             |  |
| Ice glaze and freezing rain | Up to 0.5 in accumulation                                                    |  |
| Dein                        | Up to 5 inches of rain per hour impinging on the set at angles from          |  |
| Kalli                       | the vertical up to and including 90 degrees from the vertical                |  |
| Operating at Incline        | 0 to 15 degrees inclination                                                  |  |
| Salt, Fog, Sea Spray        | Salt fog or sea-spray environment tested IAW MIL-STD-810F                    |  |
|                             | • Blowing sand/dust particle concentrations of up to 1,400 mg/m <sup>3</sup> |  |
| Sand and dust               | • Particle diameter sizes: < 74 to 1,000 micrometers, with bulk of           |  |
|                             | particles ranging in size from 74 to 350 micrometers                         |  |
| Relative humidity           | Up to 95%                                                                    |  |



## **SUCCESS STORY**

0.5 kW JP-8 Fueled Man Portable Generator Set"







**FOCUS:** conditioning middle distillate fuels for use in COT SI engine driven systems

#### **Technical Approach**

- Design and develop a fuel processing technique that will enable commercial gasoline engine driven generator sets to start and operate on middle distillate fuels - DF2 and JP8.
- Leverage advancements in UAV, small lightweight IC engines, fuel processing techniques, composite materials for packaging, start of the art alternators and power electronics, and thermal management.

#### Program Objective

- Demonstrate multi-fuel capability: gasoline, DF2 and JP8.
- Demonstrate load following capability and improved combustion on fuels.

| Physical and Operational | <b>System Metrics</b> |
|--------------------------|-----------------------|
|--------------------------|-----------------------|

| Power Output                    | 700 – 900 W                     |
|---------------------------------|---------------------------------|
| Weight                          | < 40 lbs                        |
| Power Quality, Output and Modes | MIL-STD-1332B                   |
| Operating Temperature           | -32°F to 140 °F (-36°C to 60°C) |
| Fuel                            | DF2, JP8 & Gasoline             |
| Fuel Consumption                | < 0.21 gals/hr                  |
| Acoustic Noise                  | 65 dBA @ 7 m                    |

#### "So What"

- Lightweight (<36 lbs), robust, single soldier portable and cost effective power generator that fills the power gap between 500 and 2000 W
- Multi-Fuel Capability (JP8, DF2, Gasoline)
- Reduced potential for wet stacking at lighter loads
- Selectable DC output and load following capability

#### **Transition:**

PM-E2S2 – Small Tactical Electric Power Acquisition PM-Soldier - Soldier Power Program (0.5-1 kW)





#### **Power Generation & Conversion:**

- Alternative energy solutions are good; integrating them through networked energy systems is crucial to making them easy to use and realizing their full potential
- Micro/Nano power is an emerging area that may need more investigation
- Future generator programs need to have open-source control systems that can be integrated in energy networks

#### **Energy Storage:**

- Continue efforts toward scalable, hybrid energy storage
- Core battery and capacitor S&T capability required to address unique military applications

#### **Power Control & Distribution:**

- Intelligent power management has a real potential to improve capability (Intelligent power management is more than just microgrids; it is also for Soldier worn power, outposts, camps, vehicles. It is data-enabled to work in an interconnected manner.)
- S&T has made substantial progress in WBG technology ready for acquisition integration

#### **Thermal Management:**

- Thermal limits are more frequently dictating operational capabilities
- Limited progress in thermal management technologies

#### Fuels:

• Focus is primarily on alternative fuels qualification, not development of alternative fuels





Back - Up





• Enhance ground force effectiveness

RDECO

- Reduce sustainment footprint
- Increase flexibility
  - Alternative energy
  - Recycling energy, water and waste
  - Redistributing resources
- Reduce size and number of Soldiers & systems
- Integrate power & energy situational awareness and management functions



Optimize energy use and enable energy-informed operations

## **Tactical Power Generation Needs**



- Advanced Electrochemical Materials (Higher Energy/Power & Enhanced Safety)
  - >250 Wh/kg Advanced Lithium Ballistic Rechargeable, >450 Wh/kg Primary Conformal Wearable Battery
  - Optimization of Anode/Cathode Materials for Lithium Batteries, Li-Si, Li-Li<sub>x</sub>Mn<sub>2</sub>O<sub>4-v</sub>Cl<sub>z</sub>
  - Optimization of CFx /CFx-MnO2 Blends
  - Development of Li-Air mission extender, 800Wh/kg, Li/S rechargeable & Ballistic Materials for Wearable Power Sources
  - Li-Ion Ultracapacitor, >50 Wh/kg

RDECOM

- Multi-Fuel Portable Power Source
  - 20-50W Alane fueled Conformal Wearable Fuel Cell, 170 W/kg, 900 Wh/kg 72 hrs
  - 1kW, <30lb Flex Fuel Man Portable Generator- JP-8, gasoline, propane, alcohols</p>

#### **Fuel Reformation & Combustion**

- CO<sub>2</sub> to fuel H2 and Butanol
- Fuel Reformation for Fuel Cells JP8 to H2 (100Wh/Cartridge)
- Design and fabrication of fuel synthesis catalysts
- Energy Harvesting
  - Solar & Wearable Kinetic Energy Harvesting for Soldier
- Wireless Power & Power Distribution
  - Soldier & Vehicle Battery Charging and E-Textiles





Power Managers







Manwearable Fuel Cell

Portable Flex-Fuel 1 KW Generator







#### UNCLASSIFIED

## **Characterization Testing**



Physical Size / Weight Verification

MIL-STD-705C, Test Method 503.1 - Start and Stop Test

MIL-STD-705C, Test Method 601.4 - Voltage Waveform Test (Harmonic Analysis)

MIL-STD-705C, Test Method 601.5 - Voltage Waveform Test (Voltage Deviation Factor)

MIL-STD-705C, Test Method 602.1 - Voltage Modulation Test

MIL-STD-705C, Test Method 608.1 - Frequency and Voltage Regulation, Stability and Transient

Response Test (Short Term)

MIL-STD-705C, Test Method 619.2 - Voltage Dip and Rise Rated Load Test

MIL-STD-705C, Test Method 661.2 - Sound Level Test

MIL-STD-705C, Test Method 670.1 - Fuel Consumption Test

MIL-STD-705C, Test Method 701.2 - Starting and Operating Test (Moderate Cold Battery Test)

MIL-STD-705C, Test Method 710.1 - High Temperature Test