Development of a Compact Fusion Device based on the Flow Z-Pinch
H.S. McLean, D.P. Higginson, J.M. Mitrani, K. Tummel Lawrence Livermore National Laboratory

Background
Controlled thermonuclear fusion energy requires positively-charged nuclei to overcome electrostatic repulsion and approach each other to small enough distances to fuse via the nuclear strong force. These close approaches require high temperatures, and the high energy plasma must be confined and sustained in this state for a prolonged period for sufficient fusion energy output. Conventional approaches use massive magnetic field coils to form large toroidal plasma, increasing the energy input cost and complexity of the device.

The Z-pinch eliminates magnetic field coils, increases fusion gain with decreasing plasma radius, and offers a compact configuration. However, it is classically unstable.

Fusion Z-pinch Experiment: FuZE

Overview
Zap Energy Inc., the University of Washington, and Lawrence Livermore National Laboratory are advancing the shear-flow stabilized Z-pinch concept and assessing its potential for scaling to fusion conditions and a practical path to a compact, low-cost fusion reactor. The Z-pinch is a geometrically simple and elegant approach to fusion, utilizing an electric current to simultaneously magnetically confine, compress, and heat a cylinder of plasma. However, the traditional Z-pinch is known to be plagued by instabilities that prevent attainment of conditions required for net fusion energy output. Sheared axial flows have been shown to stabilize disruptive Z-pinch instabilities at modest plasma conditions. Through experimental and computational studies, the team has successfully scaled this concept over the past four years from 50 kA to >300 kA of pinch current with a final goal in the present device of >400 kA. The primary goal for Zap Energy Inc.’s next step device is to achieve 600 kA of plasma current where plasma density and temperature are predicted to approach conditions of scientific breakeven, i.e. fusion power would exceed power input to the pinch were it fueled with a 50-50 mix of deuterium-tritium.

Simulations Show Kinetic Stability
Detailed computational simulations using high fidelity models guide the experimental design and interpretation of the results.
- Fluid plasma models include MHD, two-fluid, and multi-fluid simulated using MACH2, MACH3, WARP5, & WARPXM.
- Particle plasma model is simulated using LSP/Chicago.

SFS Z-pinch Favorably Scales to Reactor
Flow-stabilization theory of a Z-pinch has no additional limitations as the plasma parameters are increased. Experimental results and computational simulations have supported the theory. The Z-pinch scales to high performance conditions by increasing the current or decreasing the plasma mass, which decrease the plasma radius and increases the fusion gain.

SFS ZFS Z-pinch naturally leads to a compact fusion device and use of liquid walls.

FuZE is Producing D-D Fusion Reactions
Neutron emission occurs over a 5 µs period; greater than 5000 instability growth times

Decovolving DHI data yields a radius of a=0.3 cm and density of n=10^{11} cm^{-3}

Neutron production is from ~34 cm column, starting at the nose cone

Present Yield: ~5 x 10^{18} neutrons / pulse for 20% D_{2}, T_p = 200 kA, n=10^{11} cm^{-3}, Ti=1.2 keV

Yield Goal: ~10^{20} neutrons / pulse for 100% D_{2}, T_p = 400 kA, n=10^{14} cm^{-3}, Ti=2 keV

Digital Holographic Interferometry (DHI) shows a pinch structure

Projected FuZE Parameters
B_0 = 1.3 T, T_p = 1.2 x 10^10 K, I_p = 300 kA
Profiles of m=0 (bottom left) and m=1 (bottom right) instabilities. Growth rates in kinetic simulations (top right) show lower growth rates at large (small scale lengths than MHD. T_f = 4.2 μm/s

Shumlak & Hartman, PRL (1986)

Molten PbLi or SnLi
Pinch
Pulse Power Driver
Flow-stabilized pinch
Injection electrodes
Vacuum Pump
To/from gas recovery/injection system
Recirc Pump
Flow
To/from Steam Generator

Molten Lead/Lithium (Pb/Li) is one of the electrode materials, heating and deuterium and tritium breeding.

Shumlak et al., NF (1988); Shumlak et al., JCP (2011); Mitrani et al., PRL (2012); Tummel et al., FST (2014)