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Advantages of the RFB Architecture

 Decoupled energy and power scaling

 Simple manufacturing

 High durability and low maintenance

 Location independence

Present RFB costs exceed $400 kWh-1, 

well beyond the $150 kWh-1 target

set forth by the DOE EERE. 
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Identify cost effective design pathways and quantify technical hurdles.

• Materials Properties

• Cost Parameters

• Component Performance

Desired System 

Cost and 

Performance

Consider present and 

future-state battery costs, 

excluding installation.
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 First JCESR analysis highlighted 

pathways to low-cost, multi-hour 

batteries

 Tailored for 5 h discharge

 Future-state cost estimates 

assuming mass production

 2 GW annual stack output

 Identified viable, multi-dimensional 

design space for Aq and Naq RFBs

 Largest cost benefits from 

economies of scale
 Ha & Gallagher, J. Power Sources, 296 (2015) 122.

Darling & Gallagher et al., Energy Environ. Sci., 7 (2014) 3459.
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Explicit cost analysis hides possible cost savings through 

design, material, or performance improvements.

 First JCESR analysis highlighted 

pathways to low-cost, multi-hour 

batteries

 Tailored for 5 h discharge

 Future-state cost estimates 

assuming mass production

 2 GW annual stack output

 Identified viable, multi-dimensional 

design space for Aq and Naq RFBs

 Largest cost benefits from 

economies of scale
 Ha & Gallagher, J. Power Sources, 296 (2015) 122.

 Compared RFB capital costs to other 

battery architectures

Darling & Gallagher et al., Energy Environ. Sci., 7 (2014) 3459.
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 All RFBs:

 Active species cost < $7 kg-1

 Molecular weight < 200 g mol-1

 AqRFBS:

 Cell Voltage ≥ 1.4 V

 ASR < 1.5 Ω cm2

 NAqRFBs

 Actives conc: 2 – 4 mol kg-1

 Cell Voltage ≥ 2.8 V

 ASR < 5 Ω cm2

 Salt Cost Factor < $0.5 mol-1

Key challenges for 5 h Discharge$100 kWh-1 Design Map
(battery cost, no inverter)

Techno-economic analysis guides experimental research by 

identifying largest technical obstacles.

Dmello & Milshtein et al., J. Power Sources, 330 (2016) 261.



Impact of Discharge Time on RFB Cost

 Present VRFB costs validated with:

 Other literature models

 Vionx Energy cost estimate

 Lazard energy storage report

 Future VRFB cost reductions:

 Economies of scale

 Cheaper stack components

 Lower chemical costs

 Future Li-ion: $100 - 200 kWh-1

 Future AqRFB cost reductions:

 Anticipate slight performance boost

 Significantly cheaper chemicals

6

VRFB

Future

Li-ion
Future

VRFBFuture

AqRFB

?

Increasing discharge duration 

approaches electrolyte cost.

The RFB architecture could enable extremely low capital costs for 

long duration discharge applications.

Darling & Gallagher et al., Energy Environ. Sci., 7 (2014) 3459. Dmello & Milshtein et al., J. Power Sources, 330 (2016) 261.

B. Gellerman, “A novel liquid battery could hold potential for unlimited energy 942 storage,” BostonomiX Ser, (2017).



AQDS is an industrially-relevant 

material with a large amount of 

process information known. 

Defining Inexpensive Chemistries
 RFBs require low chemical costs to compete in long-duration storage

 Certain inorganics are inexpensive commodities

 e.g., Sulfur ($0.20 kg-1), Bromine ($1.41 kg-1)

 Organic active species show promise due to rational design

 Ding et al., Chem. Soc. Rev., 2017, doi: 10.1039/C7CS00569E.

 Are organic battery materials inexpensive

 Process cost modeling case study: Anthraquinone Disulfonic Acid

7
Dietrich et al., Estimating the Cost of Organic Battery Active Materials: A Case Study on Anthraquinone Disulfonic Acid. in preparation.

Huskinson et al., Nature, 505 (2014) 195.

(≤ $5 kg-1)?
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Estimate cost per unit mass of AQDS as a function of production quantity.

Dietrich et al., Estimating the Cost of Organic Battery Active Materials: A Case Study on Anthraquinone Disulfonic Acid. in preparation.

Huskinson et al., Nature, 505 (2014) 195.

(≤ $5 kg-1)?



Estimating AQDS Cost per Unit Mass
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Aspen Economic Analyzer

 CAPEX consists of:

 ISBL, OSBL, Engineering costs, 

Contingency

 OPEX contributions:

 Labor, Maintenance, Overhead, Raw 

Materials, Utilities, Waste Disposal

Dietrich et al., Estimating the Cost of Organic Battery Active Materials: A Case Study on Anthraquinone Disulfonic Acid. In preparation.

$5 kg-1

$5 kg-1 ≈ 100 MWh (1.5 V cell)



Conclusions
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Early-stage techno-economic modeling can inform research directions and 

highlight technical bottlenecks.

Process-based cost modeling 

can illuminate the cost-

effectiveness of new materials.

RFBs show promise for long-duration 

energy storage, IF inexpensive 

electrolyte chemicals and balance-of-

plant designs can be identified.
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