Reversible Solid Oxide Cells for Energy Storage

Prof. Rob Braun, Evan Reznicek
Department of Mechanical Engineering
College of Engineering & Computational Sciences
Colorado School of Mines
Golden, CO USA
(http://aes.mines.edu)

ARPA-e Long Duration Energy Storage Workshop
Chicago, IL December 8th, 2017
Presentation Outline

I. Overview of Reversible Solid Oxide Cell (ReSOC) concept

II. Thermodynamics & Thermal Management of Reversible Systems

III. Process Systems Engineering of ReSOC ‘Flow Batteries’
 - 100 kW / 800 kWh

IV. Techno-Economic Outlook
 - Distributed systems
 - Power–to–gas
A reversible solid oxide cell (ReSOC) has similarities to a flow battery where reactants are tanked

- **Flow battery advantage:**
 - Power scales with size of stack
 - Energy scales with size of storage tanks

- **The reversible solid oxide cell (ReSOC) advantage**
 - High efficiency and energy dense fuels

![Diagram of ReSOC](image)

*Figure (right): Jensen, Graves, Wendel, Braun, et al., Energy & Env Sci (2015)
High temperature fuel cell systems are comprised of cell-stack hardware and balance-of-plant equipment.

Ni-YSZ | YSZ | LSCF (~800°C)

Figure: Kee et al., Proc. Combustion Institute 30 (2005)
High temperature reversible SOCs are more suitable for energy storage than PEM cells

- The fuel cell stack is not the whole picture
 - Storage (tanks)
 - Delivery (pipes and pumps)
 - Thermal integration (Heat exchangers and cell conditions)

\[\eta_{RT} = \frac{V_{FC}}{V_{EC}} \]

@ 0.5 A/cm²,
SOC: \(\eta_{RT} = 81\% \)
PEM: \(\eta_{RT} = 39\% \)

Cell performance is important, but the balance-of-plant is also critical to roundtrip system efficiency

\[
V_{\text{cell}} = E_N(T, p, x_i) - (\eta_{\text{ohmic}} - \eta_{\text{act}} - \eta_{\text{conc}})_{j, r, p, x_i}
\]

\[
\eta_{RT, \text{stack}} = \frac{\text{power generated (SOFC)}}{\text{power consumed (SOEC)}} = \frac{i_{FC} V_{FC}}{i_{EC} V_{EC}} = \frac{V_{FC}}{V_{EC}}
\]

\[
\eta_{RT, \text{sys}} = \frac{\text{SOFC mode net power}}{\text{SOEC mode total power}} = \frac{V_{SOFC} * i_{SOFC} - P_{SOFC,BOP}}{V_{SOEC} * i_{SOEC} + P_{SOEC,BOP}}
\]

DOE target: 80%

Roundtrip Stack Efficiency:
\(i_{FC} = i_{EC}\) for continuous operation

Roundtrip System Efficiency:

- **How can we improve system efficiency?**
 1. Reduce overpotential (cell/stack performance - ASR)
 2. Reduce balance of plant power (system design & operation)
Thermodynamics suggest maximum roundtrip efficiencies are higher with CH$_4$ / H$_2$O than H$_2$ / H$_2$O systems.

- Maximum roundtrip efficiency < 80% at 625°C and above.
- When considering evaporative load, $\eta_{RT,max}$ < 70%.
- Maximum roundtrip efficiency ~100% at all temperatures.
- ~10% efficiency reduction when considering liquid H$_2$O.

Ideal efficiency: $\eta_{RT,max} = \frac{\Delta G}{\Delta H} = 1 - \frac{T \Delta S}{\Delta H}$

Methane

Direct CH$_4$ red-ox cannot be executed, thus practical gas compositions and utilization reduce maximum efficiency

- With utilization < 100% and equilibrium considerations, $\eta_{RT,max}$ decreases
- Maximum roundtrip efficiency lowered to 97% at 570°C

- When considering evaporative load, $\eta_{RT,max} \approx 85\%$ at 1 atm ($\approx 87\%$ at 20 atm)

Operation - stack thermal management is crucial and improves with internal reforming/generation of methane

- Fuel cell requires heat rejection (air-cooled)
- Electrolysis requires heat supply (overpotential)
- Thermoneutral voltage is lowered by methanation

SOEC mode reactions

- **Fuel channel**
 - Reverse water gas shift: $H_2 + CO_2 \rightarrow H_2O + CO$
 - Methanation: $3H_2 + CO \rightarrow CH_4 + H_2O$

- **Oxygen channel**
 - $H_2O \rightarrow \frac{1}{2}O_2 + H_2$ at 600°C

- **Power source**

Methanation promoted by:
- Low temperature
- High pressure

Highly exothermic!

Highly endothermic!
Quantify stack thermal management with the thermoneutral voltage

- **Thermoneutral voltage**: $V_{TN} \sim \Delta H / nF$ (not as straightforward for HC mixtures)
 - Net heat generated by irreversible loss balanced by net reaction heat (stack operates both isothermally and adiabatically)

- >200 mV voltage reduction in electrolysis mode with CH$_4$ systems

$$\dot{Q}_{gen} = i(V_{cell} - V_{TN})$$

For H$_2$/O$_2$

- $V_{TN} = 1.29$ V
- $E_N = 0.98$ V

For CH$_4$/O$_2$

- $V_{TN} = 1.04$ V
- $E_N = 1.04$ V
Cell-stack electrochemical model is calibrated to next-gen ReSOC performance data and extrapolated

Electrochemical parameters derived from button-cell calibration are applied to a 1D channel level model

\[V_{\text{cell}} = E_N(T, p, x_i) - (\eta_{\text{ohmic}} - \eta_{\text{act}} - \eta_{\text{conc}}) j, T, p, x_i \]

- Ohm’s law
- Bulte-Volmer equation
- Fickian diffusion

Test data and cell performance in collaboration with S. Barnett (Northwestern)

see Wendel et al., J. Power Sources, 283:329-42, (2015).
Cell-stack electrochemical model is calibrated to next-gen ReSOC performance data and extrapolated

Electrochemical parameters derived from button-cell calibration are applied to a 1D channel level model

\[
V_{\text{cell}} = E_N(T, p, x_i) - (\eta_{\text{ohm}} + \eta_{\text{elec}} + \eta_{\text{cov}})
\]

Ohm’s law

ASR @ 650°C (Ωcm²)

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Button</td>
<td>0.18</td>
</tr>
<tr>
<td>Cell</td>
<td>0.20-0.25</td>
</tr>
<tr>
<td>Stack</td>
<td>0.30-0.40</td>
</tr>
</tbody>
</table>

see Wendel et al., J. Power Sources, 283:329-42, (2015).
Cell-stack electrochemical model is calibrated to next-gen ReSOC performance data and extrapolated.

Electrochemical parameters derived from button-cell calibration are applied to a 1D channel level model.

see Wendel et al., J. Power Sources, 283:329-42, (2015).
Distributed-scale ReSOC systems are nearer-term, but require careful design integration

Stand-alone System Features (8-hour storage):
- High temp., pressurized vapor storage (~200°C, 20 bar)
- Minimal BOP: two-stage compression w/ intercooling

Baseline Results:
- Roundtrip efficiency: 65 - 70% (expander)
- Energy density (ϵ_{st}): 19 - 40 kWh/m³ (tank pressure)

Trade-space Variables:
1. Reactant utilization
2. Stack vs. Tank pressure
3. Water management

Baseline stack conditions: 600°C, 1 atm, and U_F=60%

The preliminary outlook for 100 kW (800 kWh) ReSOC based energy storage system is competitive with batteries

- Pressurized stack, 155-bar H₂ tanks
- Design enables dual-mode operation
 - Levelized cost and efficiency still challenged to meet DOE long-term targets
 - Cost compares well vs other technologies
 - Tank cost is 25% of capital in this analysis

<table>
<thead>
<tr>
<th>Technology Comparison²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
</tr>
<tr>
<td>ReSOC</td>
</tr>
<tr>
<td>Na-Ni-Cl</td>
</tr>
<tr>
<td>Li-Ion</td>
</tr>
<tr>
<td>Na-S</td>
</tr>
<tr>
<td>Va-Redox</td>
</tr>
</tbody>
</table>

100 kW / 800 kWh ReSOC Energy Storage Cost Distributions

LCOS Breakdown
22.4 ¢/kWh

- O&M: 9%
- Electricity: 26%
- PCS: 6%
- Capital: 59%

Capital Cost Breakdown
(414 $/kWh)

- Stack: 21.8%
- Turbo-mach: 15.7%
- HXs: 21.1%
- Tanks: 25.0%
- PCS: 10.2%
- Misc: 6.2%

Hydrogen-tanks = $10,100/m³
Electricity cost = 3.5 ¢/kWh
65% capacity factor
Pressurization, tank cost reduction, improve economics

How to get capital cost reduction?

Levelized Cost of Storage

<table>
<thead>
<tr>
<th>Method</th>
<th>LCOS (cents/kWh)</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric ReSOC</td>
<td>31.5</td>
<td>29%</td>
</tr>
<tr>
<td>Pressurized ReSOC</td>
<td>22.4</td>
<td>37%</td>
</tr>
<tr>
<td>Press. ReSOC, CNG tanks</td>
<td>19.9</td>
<td>53%</td>
</tr>
<tr>
<td>Press. ReSOC, 50% cap red</td>
<td>14.8</td>
<td></td>
</tr>
</tbody>
</table>

\[
LCOS = \frac{\sum_j TIC_j \left(\frac{d}{1-(1+d)^{-N_j}} \right)}{E_{cyc} n_{cyc,ann}} + \frac{P_{elec}}{\eta_{RT,AC}} + C_{O&M}
\]
Summary

- Cost and performance outlook:
 100 kW / 800 kWh: ~60-65% RT efficiency, 20 ¢/kWh, 250-400 $/kWh TIC
 P2G-to-Power: ~61% RT efficiency, 15 ¢/kWh, ~1500 $/kW CAP

- No depth of discharge limitations
- “Battery” cycling desirable (provided stack thermal cycling controlled)
- In P2G: LCOS can be manipulated on-the-fly by variable op mode

Technology Development (Low-TRL: far behind low-T electrolysis)

- **Cell:** Advanced cell development towards 600°C and pressurization
 - Scale-up, Long-term stability and durability testing

- **System:** Upscale, integration, & pilot demo incl. extensive mode-switching
 - Dynamic operation & control (part-load, ramping dynamics)
Acknowledgements

Mr. Evan Reznicek, PhD student (CSM)
Dr. Chris Wendel, RES Americas, Inc. (CSM)
Dr. Pejman Kazempoor, GE Global (CSM)
Dr. Robert Kee (CSM)
Dr. Scott Barnett (Northwestern University)

Braun Advanced Energy Systems Research Group (http://aes.mines.edu)