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Brayton Energy Advanced Hybrid Fuel Cell Project 
with Siemens & Arctic Research/NETL/CTC (2004-2007)

1. Detailed system performance modeling, optimization, and LCOE

• Systematic Trades studies focused on lowering the cost of fuel 
cell systems.   

• 6 cycles analyzed 2 MSFC 4 SOFC

•SOFC Hybrids showed the most potential 

(lowest LCOE, highest efficiency) 

2.  Design of compact 850C heat exchangers 



Four SOFC Hybrids Analyzed for Siemens-Westinghouse 
Arctic Energy Lab at U. Alaska   
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Schematic for Proposed Intercooled Recuperated (ICR) Cycle 
Hybrid co-fired PSOFC

Variable-geometry nozzle 
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SOFCThree degree of freedom system

1. Fuel throttle

2. VAN

3. PT speed

• Operate without 

combustor firing, for 

best efficiency, low 

power.

• Co-fire combustor to 

magnify power, load 

follow, and 

improved economics 

Also studied SOFC 
Reheat cycle 

Ceramic turbine, high 
firing temp gas turbine 



ICR350 – Vehicular and stationary gas 
turbine 
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Peak electrical 
efficiency 42%, 
fired at 1100 C, 
2000F

This ICR engine 
formed the 
basis for hybrid 
SOFC modeling. 
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Summary of Fired/Unfired Operating Parameters

fired unfired

TIT 2000F 1567F

Nozzle Setting 100% 70%

Airflow (kg/s) 0.83 0.31

PRSTACK 14.3 5.2

Engine Power (kWe) 248.3 46.8 (531%)

SOFC Power (kWe) 197.6 149.1 (133%)

SOFC Effy (LHV) 36.8% 48.9%

System Power (kWe) 445.9 195.9 (228%)

System Effy (LHV) 52.8% 64.2%

SOFC Current (amps) 439035 249394

Cell Voltage (V) 0.500 0.664

note: SOFC power & efficiency are net electric

         after 90% inverter

Normalized costs: 

Hybrid PSOFC 
at 

700ma/cm2

Std atm. 
SOFC at 

400ma/cm2

SOFC $/kW 3429 6000
ICR GT $/kW 500

Net   $/kWe 1798

Power density, ma/cm2 700 400



Fuel (low pressure natural gas) 

Atmospheric SOFC
GENSET: 4 to 10  

kWe Hybrid SOFC    

• Residential net 

metering power 

• ηe ~ 66% 

• ηchp = 84%  (1 kW-

thermal)  
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Siemens Westinghouse SOFC Hybrid (220 Kwe)

Courtesy Siemens Stationary Fuel Cells
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Challenges

• Complex Balance-of-plant

• Turbine airflow match/mismatch with 
Fuel Cell requirements

• Low turbine inlet temperature

• Higher capital cost

• Operational complexity (higher risk to 
damage the fuel cell stack)

Siemens Westinghouse SOFC Hybrid System

Successes

• World’s first demonstration of  a Fuel 
Cell/Micro Turbine Generator hybrid 
power system

• Successfully demonstrated startup-
stable operation, and orderly shutdown 

• ~3,000 hrs operation

• Electrical efficiency ~53% LHV 
(Potential for higher system efficiency)

• Reduced emissions (NOx and SOx)



Jack Brouwer, Ph.D.

Associate Director

2017

Dynamics of Hybrid Fuel Cell 
Systems

for: ARPA-E Workshop, Washington DC 
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Integrated Fuel Cell System Dynamics
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Dynamic Simulation: 220kW SOFC/GT System

SOFC Power Experimental and Model Comparison

for the 220 kW SOFC/GT Hybrid
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How Can We Do It?

Integrated Stand-Alone SOFC system

• Manipulate:
o Fuel flow

o Blower power

o Bypass valve

• Control:
o System power

o Peak SOFC temperature

o SOFC temperature profile

• Perturbation:
o 25 to 70 amp current increase with PEN temperature feedback

Mueller, F., Jabbari, F., Brouwer, J., Journal of 
Power Sources, Vol. 187, Iss. 2, pp. 452-460, 2009
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How Can We Do It?

Integrated 
SOFC 
system 

25 to 70 amp
current 
increase
perturbation

Control actions:

© National Fuel Cell Research Center, 2011

Mueller, F., Jabbari, F., Brouwer, J., 
Journal of Power Sources, Vol. 
187, Iss. 2, pp. 452-460, 2009
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How Can We Do It?

Integrated SOFC system - 25 to 70 amp current increase with PEN 
temperature feedback 

Mueller, F., Jabbari, F., Brouwer, J., Journal of 
Power Sources, Vol. 187, Iss. 2, pp. 452-460, 2009
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Dynamic Poly-Generation Analyses
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Can a Tri-Generation System Respond to Fueling, Full Tank?

• Diurnal dynamic operation of SOFC

• Hydrogen tank fills forcing end of tri-generation

• Control of system temperatures during transient is possible
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1-D Model Integration into Systems Analysis

Catalytic hydro-gasifier IGFC system

HP SOFC & Heat
Exchange System

(1-D, 0.8V, 73% mf)

Li, et al., Journal of Power Sources, Vol. 
195, Iss. 17, pp. 5707-5718, 2010.
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IGFC Performance Comparison

Item 0-D Model 1-D Single Stage 
Counter-flow SOFC

Coal energy input 1,397 GJ/h (HHV) 1,397 GJ/h (HHV)

SOFC operation pressure 10 atm 10 atm

Gross power output

SOFC electrical power 247.8 MW 247.3 MW     

Cathode exhaust expander 63.4 MW 178.6 MW     ↑ 

Steam turbine 2.6 MW 1.9 MW     

Syngas reactor/expander topping cycle 9.3 MW 7.6 MW 

Total gross power generated 323.3 MW 435.6 MW      ↑    

Auxiliary power consumption (incomplete list)

ASU 2,186 kW 2,186 kW

SOFC air compressor/blower 66,906 kW 242,499 kW     ↑↑↑

Recycled H2 compressor 8,235 kW 8,283 kW

Total internal power consumption and 
losses

84.7 MW 260.5 MW      ↑↑↑

Net electric power 238.6 MW 175.1 MW ↓↓↓

Overall thermal efficiency 61.5% (HHV) 45.1% (HHV)     ↓↓↓

Li, M., Rao, A.D., Brouwer, J., and Samuelsen, Journal of 
Power Sources, Vol.195, Iss. 17, pp. 5707-5718,  2010.
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Strategy for Mitigating High DT Challenge

• Cascade SOFC stacks

Overall 
Uf = 0.727
Ua = 0.455

Air in
650°C

Fuel in
650°C

Fuel out
671°C

Uf = 0.70

Ua = 0.15

Air addition
330°C

Air
713°C

Fuel in
650°C

Fuel out
689°C

Uf = 0.73

Ua = 0.16

Air addition
330°C

Air
732°C

Fuel in
650°C

Fuel out
704°C

Uf = 0.73

Ua=0.17

Air addition
330°C

Air
742°C

Fuel in
650°C

Fuel out
719°C

Uf = 0.74

Ua = 0.17

Air out
753°C

Li, M., Rao, A.D., Brouwer, J., and Samuelsen, Journal of 
Power Sources, Vol.195, Iss. 17, pp. 5707-5718,  2010.
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IGFC Performance Comparison

Item 0-D Model 1-D Cascading Counter-
flow SOFCs

Coal energy input 1,397 GJ/h (HHV) 1,397 GJ/h (HHV)

SOFC operation pressure 10 atm 10 atm

Gross power output

SOFC electrical power 247.8 MW 247.8 MW     

Cathode exhaust expander 63.4 MW 72.1 MW     ↑ 

Steam turbine 2.6 MW 2.7 MW     

Syngas reactor/expander topping cycle 9.3 MW 7.6 MW 

Total gross power generated 323.3 MW 330.4 MW      ↑ 

Auxiliary power consumption (incomplete list)

ASU 2,186 kW 2,186 kW

SOFC air compressor/blower 66,906 kW 84,748 kW     ↑

Recycled H2 compressor 8,235 kW 9,792 kW     ↑

Total internal power consumption and 
losses

84.7 MW 104.3 MW      ↑

Net electric power 238.6 MW 226.1 MW ↓

Overall thermal efficiency 61.5% (HHV) 58.2% (HHV)     ↓

Li, M., Rao, A.D., Brouwer, J., and Samuelsen, Journal of 
Power Sources, Vol.195, Iss. 17, pp. 5707-5718,  2010.
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Dynamics to Complement Loads/Renewables

McLarty, D. and Brouwer, J., Journal of Power 
Sources, Vol. 254, pp. 126-136,  2014.



Dynamics to Complement Loads/Renewables

• 10% & 20% load-shed 30-100% diurnal load-following

McLarty, D. and Brouwer, J., Journal of Power 
Sources, Vol. 254, pp. 126-136,  2014.
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Backup Slides
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Sample Dynamic Conservation Equations
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Species Conservation Sample Mass Conservation Equations

Momentum Conservation

Nernst Equation

Electrochemical Losses

Cell Voltage

iR=L cellR

Roberts, R., Mason, J., Jabbari, F., Brouwer, J., Samuelsen, S., Liese, 
E. and Gemmen, R., ASME Paper Number 2003-GT-38774, 2003.
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Sample Dynamic Simulation Module Geometries

• Planar SOFC with 10 Discrete Computational Nodes
o Anode Gas, Cathode Gas, Cell EEA, Separator Plates

• Reformer Module with 5 Discrete Computational Nodes
o Anode Off-Gas Recycle, Fuel Mix, Combustor HX, Catalyst Bed

10 NODES

REFORMED
FUEL

CATHODE GAS

CELL EEA SEPERATOR PLATE

5 NODES

NATURAL
GAS

EXHAUST

STEAM /
DEPLETED FUEL

REFORMATE

FC EXHAUST

Adiabatic Mixing Volume
Catalyst Bed



© Advanced Power and Energy Program 2017
17/13

How Can We Do It?

Hybrid SOFC/GT System

• Manipulate:
o Recirc. blower power

o Fuel flow

o Air preheat bypass valve

o SOFC air bypass valve

• Control:
o System power

o Peak SOFC temperature

o SOFC temperature gradient

o Oxidizer temperature

• Perturbation:
o Sudden decrease from 100% 

to 50% full power
McLarty, D.F., Samuelsen, S., and Brouwer, J. 
ASME Paper FC2010-33328, June, 2010
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How Can We Do It?

Hybrid SOFC/GT System

• Met sudden decrease
in power demand

• Kept SOFC peak
temperature < 1073 K 
during transient

• Kept SOFC temperature
gradient < 150 K
during transient

McLarty, D.F., Samuelsen, S., and Brouwer, J. 
ASME Paper FC2010-33328, June, 2010
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Sample Model Results: Syngas (1/3)

co-flow 
species distribution

counter-flow 
species distribution

 fuel molar composition:
26.26% H2, 17.1% CH4, 2.94% CO, 4.36% CO2, 49.34% H2O

 adiabatic, atmospheric operation
 85% fuel utilization, 14.3% air utilization
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Sample Model Results: Syngas (2/3)

co-flow temperature counter-flow temperature

 fuel molar composition:
26.26% H2, 17.1% CH4, 2.94% CO, 4.36% CO2, 49.34% H2O

 adiabatic, atmospheric operation
 85% fuel utilization, 14.3% air utilization
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Sample Model Results (3/3)

co-flow 

electrochemical performance

counter-flow

electrochemical performance

 fuel molar composition:
26.26% H2, 17.1% CH4, 2.94% CO, 4.36% CO2, 49.34% H2O

 adiabatic, atmospheric operation
 85% fuel utilization, 14.3% air utilization



© Advanced Power and Energy Program 2017
22/13

Quasi-3D cross-flow planar SOFC model – sample results

plots of cross flow planar SOFC PEN temperature and current density distributions

operated on syngas containing ~17 vol.% CH4 Uf = 85%, Ua = 14.7%

Extend to Quasi-3D Cross-flow Planar SOFC



© Advanced Power and Energy Program 2017
23/13

Planar SOFC Model Geometry

Quasi-2D co/counter flow planar SOFC model

Li, M., Powers, J.D., and Brouwer, J., Journal of Fuel Cell 
Science and Technology, Vol. 7, pp. 041017-1-12, 2010
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Key Simplifications & Assumptions

• Steady state model

• Resolve gradients in primary flow direction

• 4 separate temperatures resolved in each node 
• Positive electrode-electrolyte-negative electrode (PEN) structure 

• interconnect

• fuel flow 

• air flow

• H2 electrochemical oxidation only (CO oxidized through water-gas 
shift reaction)

• Water-gas shift reaction is always in equilibrium

• Methane reformation is controlled by local chemical kinetics

• External heat loss is by radiation heat transfer to vessel only 

• Large Peclet number, thus the effect of axial heat conduction in 
gas phases is negligible Li, M., Powers, J.D., and Brouwer, J., Journal of Fuel Cell 

Science and Technology, Vol. 7, pp. 041017-1-12, 2010
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Numerical Scheme

Li, M., Powers, J.D., and Brouwer, J., Journal of Fuel Cell 
Science and Technology, Vol. 7, pp. 041017-1-12, 2010

PEN

PSR PSR PSR

PSR PSR PSR



© Advanced Power and Energy Program 2017
26/13

1-D counter-flow SOFC model in integrated IGFC analysis

• Peak temperatures move to SOFC interior

• Inlet & outlet temperatures no longer represent peak DT 

• Outlet fuel/air temperatures are decreased – disabling 
downstream heat use

• Air flow required for ∆Tmax=200°C is 4X that of 0-D model

Challenges Identified: 0-D vs. 1-D

fuel out 
(650 + 200) °C

air out 
(650 + 200) °C

fuel in
650 °C

air in
650 °C

fuel out 
(650 + 40) °C

air out 
(650 + 70) °C

fuel in
650 °C

air in
650 °C



Ultra-Clean | Efficient | Reliable Power

Hossein Ghezel-Ayagh

ARPA-E Workshop 

January 27, 2017

Hybrid System Experience at FCE



Process Flow Diagram of DFC/T Power Plant

 Operating pressures of fuel cell and turbine are independent

 Turbine integration increases overall efficiency by 20-30%
2
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Direct FuelCell Stack Module

• A 250 kW DFC stack module was utilized in the 

subMW DFC/T Power Plant

3



• Compression ratio of ~ 3 - 4

• Mechanical Connections:

> Compressor exit port and turbine 

inlet port for integration with fuel cell 

system

• Range of air flows suitable for fuel 

cell stack operation (0.8-1.0 

lbs/sec)

• Capability to control air flows with 

load  (Speed Control)

• Microturbine’s controller modifiable 

for integration with  fuel cell control 

system

• Single Shaft Design

Integrated Capstone 

C60 Microturbine

Capstone Microturbine Features

4



Alpha Unit Factory Test

DFC®/T achieved a net efficiency 

of 58% during the factory tests

• Tests by an independent firm indicated California Air Resources Board’s 

(CARB) 2007 emissions standards for NOx and VOC were met.



Billings Clinic, Billings, MT

 Completed operation at host site >8000

 Achieved availability of  >87% in producing power

Alpha Unit at Montana Test Site
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