REMEDY Reducing Emissions of Methane Every Day of the Year

Jack Lewnard, ARPA-E Program Director
Jack.lewnard@hq.doe.gov

November 16, 2020
What problem are we trying to solve?

- Reverse methane accumulation in atmosphere
 - Prevent methane emissions
 - Reduce methane emissions at source
 - Remove methane from air
- Decreasing atmospheric methane concentration is possible with 10-30% reduction in anthropogenic CH$_4$ emissions, due to natural methane sinks
- Addressing methane emissions complements CO$_2$ capture/sequestration programs, and may be faster/cheaper

Saunois, et al., Earth Syst. Sci. Data, 12, 1561–1623
Decreasing the Atmospheric Methane Inventory

REMEDY
Reducing Emissions of Methane Every Day of the Year

- Develop integrated systems that
 - Eliminate methane emissions
 - Oxidizing to CO₂ is acceptable
 - Capture for use or conversion to higher-value products is allowed, but not a focus
 - Must ensure no harmful products are produced (e.g., formaldehyde)
 - Quantify inlet and outlet methane fluxes
 - Needed for control, since many sources have variable methane flow rates and/or concentration
 - Required to quantify methane reductions in future carbon credit programs

- Seek flexible and robust processes
 - Many approaches will be required, given diversity of methane sources
 - Multi-step processes allowed
 - Need to define emission space where proposed technology could work

- Interested in novel biological, chemical, and/or mechanical approaches; equipment designs, and/or process configurations

- Economics predicated on carbon reduction, not making a salable product
Why is this hard?

- **Sources**
 - Millions of point sources; many diffuse sources (e.g., landfills)
 - Concentrations range over >4 orders of magnitude
 - Concentration of most sources below LEL – won’t “burn”
 - Ambient concentration 1.9 ppm; CO₂ 410 ppm
 - Flow rates range over >6 orders of magnitude
 - Concentration and/or flow rate can vary with time, esp for high-impact point sources

- **Methane chemistry**
 - Symmetric, and consequently stable, molecule
 - Activation energy 359 kJ/mol in air; heat of combustion 889 kJ/mol
 - Auto-ignition temperature 540 °C (theoretical), 600 °C (experimental) at ambient pressure;
 390 °C at 1100 bar
 - Flammable (explosive) limits 4.4% (LEL) – 17% (UEL) vol% in air

- **No “Silver Bullet”**
 - Wells/mines – millennium time scales, numerous subsurface geologies
 - Oxidation – Temperature; catalysts (photocatalysts, NEMCA effect); reactants (H₂, ethane, oxygen, ozone, hydroxyl radicals); mechanical designs (engines, flares, reactors); and combinations
 - Biology – consortia populations; nutrients; poisons; enzyme stabilization
Sources—Diverse and Numerous

- Many bottom up/top down studies
 - New and improved detection tools/quantification methods
 - “Super-emitters” following log-normal distributions
- Ruminants – 100 MM cattle
- Oil and gas examples
 - Sources across supply chain
 - “Orphaned” and leaking “plugged and abandoned” wells – 0.5-2MM
 - Gas-fired compressors – 30K
 - Methane slip from flares – >50K
- Coal – Operating and abandoned mines – >3K
- Landfills – >1000 operating; >5000 closed

Example Potential Approaches

Not Intended to Limit or Direct

- **Ruminants**
 - Novel genetics, nutrients, enteric consortia modification

- **Wells/mines**
 - New abandonment/plugging techniques; novel pliable, chemical resistant materials
 - Downhole biological intervention to prevent methane emissions

- **Post-combustion methane slip (gas-fired engines, flares)**
 - New hardware designs; recuperation; catalysts; additives

- **“Geo-engineering”**
 - Accelerate tropospheric reactions
 - Accelerate soil/methanotroph reactions
Evaluation Criteria

- Disruptive, transformative technologies
 - Novel biology, chemistry, mechanical approaches; not incremental advances
- Systems Engineering Solution
 - Core prevention/abatement technology
 - Integrated detection/quantification sensors/measurement protocol
 - Control system with feedback to the prevention/abatement technology
 - Measurement protocol consistent with carbon credit markets
- Team
 - Diverse and complementary skills
 - Commercialization plan, and ideally partner
- End goal
 - De-risk proposed system with relevant lab-scale, or ideally field test
Contacts/More information

- Jack Lewnard, Program Director jack.lewnard@hq.doe.gov
- Maruthi Devarakonda, Tech SETA, Booz Allen Hamilton, Support Contractor to ARPA-E maruthi.devarakonda@hq.doe.gov
- Link to October 20th workshop - https://arpa-e.energy.gov/events/preventing-abating-anthropogenic-methane-emissions-workshop
- Teaming Partner List – https://arpa-e-foa.energy.gov/#FoaId93b90253-21d8-414a-a110-0facd1518f83
- Contract questions - ARPA-E-CO@hq.doe.gov