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A Related Effort:   
The Mission Innovation  

Materials Acceleration Platform 
Workshop Report (Jan 2018) 





The workshop (September 2017 in Mexico City) drew 133 attendees: 
●  55 professors and scientists from top universities and research institutions; 
●  6 keynote speakers and panellists, including Nobel Laureate Dr. Mario Molina; 
●  16 MI member governments represented: Australia, Canada, Denmark, Finland, 

France, Germany, European Union, India, Italy, Korea, Mexico, Netherlands, Norway, 
Saudi Arabia, United Kingdom, and United States; 

●  affiliates of Mexico- and U.S.-based universities, groups, labs, and companies; 
●  graduate students and postdoctoral researchers; and observers from different 

countries 

The Workshop 



Updating the vision of MGI 1.0 

Materials Genome Initiative 
2011 

Simula'on	

Machine		

Learning	

Robo'c		

Synthesis	

Mission Innovation Challenge 6 
2017 



Main Recommendation:  
Close the Loop! 

Automated	

Synthesis	

Automated	

Characteriza'on	

Screen	
computa'onally	
(AI	+	simula'on)	



Biggest surprise:  
Importance of modularity. 
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 1.	Closing	the	loop	

2.	AI	for	Materials	

3.	Modular	Materials	Robo'cs	

4.	Inverse	Design	

5.	Bridging	Length	and	Timescales	

6.	Data	Infrastructure	and	Exchange	



1. Closing the loop 
Integrate	powerful,	yet	usually	separate	
elements	of	materials	design	in	a	closed	loop		

Autonomous  closed-
loop nanoparticle 
synthesis system 
Benji Maruyama 
Air Force Research 
Laboratories 



2. AI for Materials 

The	scale	and	details	of	theore'cal,	
computa'onal,	synthe'c,	and	
characteriza'on	evidence	in	
materials	research	require	the	
establishment	of	this	new	branch	of	
AI.		

Na'onal	and	interna'onal	research	
organiza'ons	must	facilitate	an	
integrated	computer	and	materials	
science	research	effort	to	develop	
algorithms	that	mimic,	and	then	
supersede,	the	intellect	and	
intui'on	of	expert	materials	
scien'sts.		



To	accommodate	evolving	
materials	demands	and	the	ever-
expanding	breadth	of	clean	
energy	technologies,	
autonomous	laboratories	must	
remain	nimble	and	mo'vate	a	
modular	approach	to	the	
development	of	materials	science	
automa'on.		

Trea'ng	techniques	and	materials	
as	modular	building	blocks	fosters	
human-machine	communica'on	
and	simplifies	the	path	to	
materials	explora'on	beyond	the	
bounds	of	known	materials.		

The Synthesis Machine 
Marty Burke, University of Illiniois at 
Urbana Champaign 

3. Modular Materials Robotics 



Inverse	design	enables	automated	genera'on	of	candidate	
materials	designed	to	meet	the	performance,	cost,	and	
compa'bility	requirements	of	a	given	clean	energy	technology.	
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4. Inverse Design 



The Materials Project 

Pitt Quantum Repository 

Harvard Clean Energy Project AFLOW-lib and AFLOW-ml 

6. Data Infrastructure 



So where are we today? 

A case study on 
“The Dark Reactions Project” 



Initial Motivations 
•  Most synthesis reactions are “failures” 

●  Archived	in	laboratory	notebooks	
●  Never	reported	in	the	literature	
●  “Dark	reac'ons”		

•  Can we learn from the “dark reactions”? 
●  Define	boundary	of	“successful”	reac'ons	
●  Use	as	a	dataset	for	machine	learning	
●  Predict	new	reac'ons?	Speed	up	discovery?	
●  Develop	new	(testable)	chemical	hypotheses?	



Amine-Templated Metal Oxides… 

Norquist et al.  Inorg. Chem. 2006, 45, 5529. 
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Norquist et al.  Inorg. Chem. 2009, 48, 11277. 

Norquist et al. Inorg. Chem. 2004, 43, 6528;  
Norquist et al. Cryst. Growth Des. 2005, 5, 1913. 

Norquist et al. J. Solid State Chem.  2012,  195, 86. 

Norquist et al. J. Solid State Chem.  2011,  184, 1445. 

Norquist et al. Inorg. Chem.  2014,  53, 12027. 

Norquist et al. Inorg. Chem.  2012,  51, 11040. 



…produced by hydrothermal synthesis.  

Norquist et al.  Inorg. Chem. 2006, 45, 5529. 
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Norquist et al.  Inorg. Chem. 2009, 48, 11277. 

Norquist et al. Inorg. Chem. 2004, 43, 6528;  
Norquist et al. Cryst. Growth Des. 2005, 5, 1913. 

Norquist et al. J. Solid State Chem.  2012,  195, 86. 

Norquist et al. J. Solid State Chem.  2011,  184, 1445. 

Norquist et al. Inorg. Chem.  2014,  53, 12027. 
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Hydrothermal syntheses 



…described by a simple, modular recipe. 
•  Two metal sources 
•  One amine 
•  (Oxalic acid) 
•  Water 
•  pH 
•  Temperature 
•  Time 



The Problem 

•  Exploratory synthesis—vast chemical space 
•  Can not predict reaction outcome! 

•  Unanticipated structures are often observed 
•  No predictive model for reaction success 



Is this simply a classifier problem? 

Inputs: 
Concentration 
pH 
Time 
Temperature 
Etc. 

Outputs: 
Big crystal 
Small crystal 
Something bad (“tar”) 
No reaction 

“chemistry” 

“machine learning” 



Including data on unpublished "failed" 
experiments is essential for reliable ML models. 

unreported  
experimental  

details 

•  To distinguish “success” and “failure”, we 
need examples of both. 

•  But publication norms preclude exhaustive detail 
●  No	reports	of	“failure”	

●  Only	one	report	of	“success”	per	compound	

●  “Everything	should	work?”	

•  The reactions have been performed and recorded… 
●  ...	in	stacks	of	old	laboratory	notebooks	

•  Dark Reactions Project 
●  h\p://darkreac'ons.haverford.edu	

Input Property 1 
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Nature 533, 73-76 (2016)  
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Hydrothermal Synthesis 
•  Two metal sources 
•  One amine 
•  (Oxalic acid) 
•  Water 
•  pH 
•  Temperature 
•  Time 

Simple database schema! 



Nature 533, 73-76 (2016)  



You can’t build a classifier on raw data… 

Inputs: 
Concentration 
pH 
Time 
Temperature 
Etc. 

Outputs: 
Big crystal 
Small crystal 
Something bad (“tar”) 
No reaction 

“chemistry” 

“machine learning” 



…you need an appropriate representation. 

Inputs: 
Concentration 
pH 
Time 
Temperature 
Etc. 

Outputs: 
Big crystal 
Small crystal 
Something bad (“tar”) 
No reaction 

“chemistry” 

327-dim  
reaction  
description 
vector 



Turning lab data into descriptors  
•  Start with laboratory notebook data 

●  Reagent	names,	masses,	reac'on	condi'ons	
●  Categorized	crystal	quality	outcomes	(1..4)	

•  Use cheminformatics to add physical properties 
●  [Keep	the	reac'on	condi'ons,	e.g.,	temperature,	'me]	
●  Stoichiometries,	ra'os	
●  Organic	molecule	proper'es	

●  Solubility,	polar	surface	area,	#	hbond	donors/acceptors,	etc.	

●  Inorganic	component	proper'es	
●  Electronega'vity,	ioniza'on	energy,	radii,	posi'on	in	periodic	table,	
etc.	

•  Use these as reaction descriptors (327 per reaction) 
Nature 533, 73-76 (2016)  



Be careful how you test & train… 

•  Random test & train does not generalize! 
•  “Exploratory” split 

1.  Put	every	set	of	reac'ons	that	share	the	exact	
same	reactants	into	either	the	train	or	test	set	

2.  Tests	how	the	model	performs	on	“novel”	
reac'ons	
●  Avoid	“hidden”	overficng.		See	also	relevant	recent	

work	by	Max	Hutchinson	(Google)	&	Izhar	Wallach	
(Atomwise)	

Nature 533, 73-76 (2016)  

• …and recent work in KDD ‘18 “Optimizing a Machine Learning 
System for Materials Discovery” (and GMN’s thesis) 



Nature 533, 73-76 (2016)  



Database-assisted Synthesis Planning 

•  Use databases of all commercially available organics 
●  Emolecules.com	
●  Keep	only	diamines,	eliminate	“bad”	func'onal	groups	
●  Select	34/1681	based	on	price	and	availability	

•  Sample across structural similarity to existing amines 
•  Chemical novelty 

●  “The	chemistry	of	these	34	amines	is	essen'ally	unknown	in	the	
forma'on	of	organically	templated	metal	oxides,	as	indicated	by	
the	almost	complete	absence	of	such	compounds	in	the	
Cambridge	Structural	Database	(CSD).	On	average,	2	structures	
have	been	reported	for	each	of	the	34	amines,	with	19	not	
exis'ng	in	any	templated	metal	oxide	structure	the	CSD.	In	
contrast,	an	average	of	151	unique	structures	exist	for	the	most	
frequently	used	amines	(piperazine,	ethylenediamine,	4,4’-
dipyridyl,	and	dabco).”		

Nature 533, 73-76 (2016)  
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Human versus Machine 
• Human expert’s best “intuition”: 

●  Scale	the	mole	quan''es	of	the	organic	to	match	the	
successful	“seed	reac'on”	

• Model predictions 
●  Scan	through	thousands	of	possible	condi'ons	

●  Computa'onal	black	box	(SVM)	predicts	outcomes	
●  Do	experiment	on	most	promising	outcome	

•  Tested with 495 new experiments 

Nature 533, 73-76 (2016)  

Katie Elbert ’14 (UPenn) 
Yunwen (‘Helen’) Yang ‘15 
Wenjia (‘Scott’) Huang ’15 (JP Morgan/Chase) 
Aurellio Mollo ’17 (Harvard) 
Malia Wenny ’17(Harvard)  



We made many new compounds! 



Human 78% Machine 89% 

Fischer exact test: p<0.01 that machine is not better than human 



Interpretable ML models can 
reveal insight into reaction 
processes and provide new 

hypotheses—ML need not be a 
"black box". 



Nature 533, 73-76 (2016)  



SVMs are not “human readable” 

•  SVMs lead to high-quality predictions 
● …but	we	can’t	learn	from	them!	

•  Build a “model of the model” 
●  Surrogate	models	
●  Train	a	decision	tree	that	reproduces	the	SVM	
predic'ons	

Nature 533, 73-76 (2016)  
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What do the humans learn ? 
•  Low polarizability amines require no Na+, longer reaction times, pH > 3 

(green) 
•  Spherical, compact amines (with moderate polarizabilities) require the 

presence of S (blue) 
•  Long linear tri- and tetramines (with high polarizabilities) require the 

presence of oxalate (red) 

Nature 533, 73-76 (2016)  
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ML can be used to generate ideas 
for new experimental plans, and 

optimal ways of verifying 
proposed hypotheses. 



•  Primary:  Reactant concentrations 
●  Specia'on	and	rela've	concentra'ons	

•  Secondary: Charge density matching 
●  Fixed	amine	charge	densi'es	

●  Variable	charge	densi'es	on	the	inorganic	
components	 	

•  Tertiary:  Weaker influences 
●  Sterics	

●  Hydrogen-bonding	

●  Symmetry	

Ferey, G. J. Fluorine Chem. 1995, 72, 187. 

Can we test existing conceptual 
“models” of crystal formation? 



Descriptors represent the theory… 

Type Subset Descriptor 

Reac'on Stoichiometry Amine	amount	(moles)	

	 	 Vanadium	amount	(moles) 

	 	 Selenium	amount	(moles) 

	 Condi'ons Ini'al	pH 

	 	 Time	at	maximum	temperature 

	 	 Maximum	temperature 

Amine Amine	structure Chain	length 

	 	 Molecular	weight 

	 	 Bond	count 

	 	 Nitrogen	count 

	 	 Primary	ammonium	site	(yes/no) 

	 	 Cyclic	structure	(yes/no) 

	 	 Spherical	(yes/no) 

	 Amine	acidity Minimum	pKa 

	 	 Maximum	pKa 

	 Charge	density Maximal	projec'on	area	/	nitrogen 

	 General	proper'es Reagent	is	an	HCl	salt	(yes/no) 

Inorganics Vanadium	counter	ions Vanadium	source	contains	NH4
+	(yes/no) 

	 	 Vanadium	source	contains	Na+	(yes/no) 
Adapted from Ferey, G. J. Fluorine Chem. 1995, 72, 187. 

Polyhedron 114, 184-193 (2016) 



…select amines to test the theory. 
•  14 amines were selected using several criteria 

●  Shape	(linear,	cyclic,	bicyclic)	

●  Amine	proper'es	(1o,	2o,	3o,	mixed)	

●  pKa	

●  Charge	density	

Adapted from Ferey, G. J. Fluorine Chem. 1995, 72, 187. 

Polyhedron 114, 184-193 (2016) 



Send students into the lab to 
generate data… 

Polyhedron 114, 184-193 (2016) 



•  C4.5 decision tree algorithm uses 
information gain as the criteria for 
selecting branches 

•  Use this to generate the hierarchy of 
influences supported by the experimental 
data 

Polyhedron 114, 184-193 (2016) 

Hierarchy of Influences = Decision Tree 



What amine properties govern 
2D-layer formations? 

Molecular Systems Design & Eng. (2018) DOI: 10.1039/c7me00127d 

Historical dataset: 75 experiments 



What amine properties govern 
2D-layer formations? 

Molecular Systems Design & Eng. (2018) DOI: 10.1039/c7me00127d 

Historical dataset: 75 experiments 

Use	these	reactant	proper'es	
	 	 	 +	
stoichiometry	varia'ons	

	…to	design	a	frac'onal	factorial	
design	experiment	(128	expts)	
(23	amines)	that	creates	the	dataset	
we	would	need	to	build	a	model	



Two new layers types appear… 

Molecular Systems Design & Eng. (2018) DOI: 10.1039/c7me00127d 



What reactants best test the model? 

Molecular Systems Design & Eng. (2018) DOI: 10.1039/c7me00127d 



What reactants best test the model? 

Iden'fy	19	new	amines	near	the	
decision	boundaries		

Run	the	experiments!	

Refine	the	decision	boundary	

Molecular Systems Design & Eng. (2018) DOI: 10.1039/c7me00127d 



A dream  
(and work in progress) 



“Self-driving Chemistry” 
Semi-autonomous materials discovery 
●  Robo'c	synthesis,	103	experiments	per	day…	

●  API	for	performing	experiments	and	storing/retrieving	results	
(including	experimental	metadata)	

●  …driven	by	Ac've	Learning	+	Interpretable	Models	
●  Itera'vely	choose	“op'mal”	experiments	at	the	explora'on/
exploita'on	fron'er,	based	on	model	uncertainty	

●  Get	human	input/veto	on	proposed	experiments	
●  Quan'fy	“value	added”	of	human	experts	

●  Output	human	readable	“rules”	
●  …for	a	system	with	unclear	design	space	

●  e.g.,	Organohalide	perovskites	
●  faster	experiments	
●  tremendous	structural	diversity	(by	varying	organic	components)	
●  photovoltaics/sensors	

Synergistic Discovery and Design (SD2) 



Organohalide hybrid perovskites are an 
emerging class solution-processable 

semiconductor of materials… 

Source: DOI: 10.1039/C4EE00942H (Review Article) Energy Environ. Sci., 2014, 7, 2448-2463 



…with promising applications to photovoltaics, etc. 



“Ordinary” perovskite synthesis 



Our approach: Robots 

Liana Alves ’18 
Alyssa Sherman ‘18 
Peter Cruz Parilla ‘19 



“Robot ready” perovskite synthesis 

88 

• DOE VFP @ LBNL 
•  Emory	Chan	
(Molecular	Foundry)	

•  Liana	Alves	’18	



Sample data:  Crystal formation 

Liana Alves ’18 (!UCSD) 
Peter Cruz Parilla ‘20 
Alyssa Sherman ’18 (!UPenn) 
Emily Brown ‘19 

89 

Optical microscopy 



Sample data: Crystal quality & properties 

~800 rxns in 4 days—discover new crystal phase…story in progress… 



Early finding: 
 New retrograde soluble phase of 
phenethylammonium lead iodide 



© 2017 Emerald Cloud Lab. All rights 
reserved. 



The Emerald Cloud Lab provides a software interface to remotely control every aspect of 
experiments run in ECL’s automated facilities 

© 2017 Emerald Cloud Lab. All rights 
reserved. 

Emerald Cloud Lab Overview 



Interpretable+Active learning (with oversight) 
• 	Interpretable:	 explain	why	ML	
decisions	are	made	

• 	Ac've:	select	new	experiments	that	
best	improve	the	model	(itera've)	

•  Oversight:		Expert	can	veto	
“hypothesis”	and	“proposed	
experiment”—quan'fy	value	added	of	
human	in	loop	

Example	proposed	experiment	

Uncertainty	explanaBon	

Richard Philips ’18 (!Cornell) 



Lessons learned 
•  “Failed” reactions make better classifiers… 

●  Find	overlooked	“surprises”	latent	in	archival	data	
●  Challenge:	Need	for	public	repositories/datasets	

•  …simple models can be useful… 
●  Increased	laboratory	produc'vity/novelty	
●  Challenges:		

●  meaningful	representa'ons	of	materials	&	experiments	
●  small	and	wide	data,	with	lots	of	human	bias		

•  …and you might even learn something! 
●  Keep	us	honest	about	our	“folk-theories”	
●  Gives	us	ideas	of	new	ideas	to	test…	
●  …and	ideas	on	how	to	test	them.	

•  Robots! Coming to a lab near you… 
●  Not	just	speed…reproducibility….	
●  Importance	of	modularity	



•  Postdoctoral Fellows 
● Philip	Adler	(2015-2016)	(Visa)—”original”	dark	reac'ons	project	

● 	Ian	Pendeton	(2018-)	—	perovskites		

•  Undergraduate Students 
● Paul	Raccuglia	’14	(Google)—model	development	

● Ka'e	Elbert	’14	(UPenn)—tes'ng	reac'ons	

● Yongjia	“Sco\”	Huang	’15	(JP	Morgan/Chase)	—tes'ng	reac'ons	

● Yunwen	“Helen”	Yang	‘15—tes'ng	reac'ons	

● Casey	Falk	’16	(Amazon)	—website/database	development	

● Geoffrey	Mar'n-Noble	’16	(Google)—Data	entry,	model	development	

● David	Reilley	’16	(UCLA)—Data	entry	

● Aurellio	Mollo	’17	(Harvard)—tes'ng	reac'ons,	DFT	for	new	descriptors	

● Malia	Wenny	’17	(Harvard)—tes'ng	reac'ons,	DFT	for	new	descriptors,	ini'al	perovskites	work	

● Philip	Nega	’16	(UPenn)—tes'ng	reac'ons,	experiment	design	project	

● Brian	Guggenheimer	’16	(Amazon)—website/visualiza'ons	

● Nora	Tien	’18	(Google)—website/visualiza'ons,	model	development	

● Rosalind	Xu	’18	(!Harvard)—tes'ng	reac'ons,	factorial	expt	design	project;			

● 	Xiwen	Jia	’19	—structural	outcome	descriptors;	irra'onality	in	experiment	planning	

● Richard	Philips	’19	(!Cornell)—ac've	learning	

● 	Liana	Alves	’18	(!	UC	San	Diego)	—robo'c	synthesis	of	perovskites	

● Peter	Cruz	Parilla	‘20—hypothesis	valida'on,	perovskite	chemistry	

● Alyssa	Sherman	’18	(!UPenn)	—	hypothesis	valida'on,	perovskite	chemistry,	
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