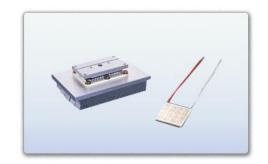


ARPA-E GENSETS ANNUAL REVIEW

12/14-12/15, 2016

Life & Energy Dept. Manager,

Yoshi Sekihisa


1. About AISIN

- A member of **TOYOTA** group of companies
- Headquarters: AISIN SEIKI CO., Ltd. in Aichi, Japan
- An international corporation with 189 facilities worldwide including factories, research centers, and sales offices
- 33 facilities in North America including factories and offices i.e. Aisin World Corp. of America (AWA)
- Tier 1 automotive parts supplier, 5th in 2015
- Sustainable technology since 1986 (US since 2008)
- Energy System Department: Gas engine driven heat pumps, Micro CHP (ICE & SOFC), Peltier Modules, etc.

2. About "COREMO"

- 1st production in 2009, currently 2013 model
- Since 2009, about 2,500 units installed in Northern Japan
- Most systems configured with combi boiler
- Some systemized with PV

Model Year	2013		Model Number:	GECC15B1N	
Dimensions:	H 1157 x W 755 x D 420	mm	Power Factor:	Over 0.95	
Weight:	143	kg	Voltage:	202	V
Electric Supply:	Single-phase, 3-lines (101/202)	V	Frequency:	50/60	Hz
Noise Level:			Heat Output:		
Rated Operation	46	db	Rated Operation	1.4e - 3.4h	kW
Night Mode Operation	45	db	Night Mode Operation	1.4e - 2.7h	kW
Silent Mode Operation	43	db	Silent Mode Operation	1.4e - 2.1h	kW
Ambient Temperature:	-25 - 25	°C	Rated Flow Rate:	5	L/min
Power Output Range:			Electrical Efficiency	26	%
Rated Operation	0.5 - 1.5	kW	Heat Efficiency	64	%
Night Mode Operation	0.5 - 1.2	kW	Total	90	%
Silent Mode Operation	0.5 - 0.75	kW	Engine:	4 cycle-single cylinder - OHV	
Current:			Displacement	245	СС
Rated Operation	2.5 - 7.5	Α	Idling @	1300	rpm
Night Mode Operation	2.5 - 6.0	Α	Rated Operation @	1750	rpm
Silent Mode Operation	2.5 - 3.75	Α	Gas Consumption	5.8 (LHV)	kW

3. Pilot Project – Indiana (Detached House)

Property Info

System Installed: October 2015 (Outdoor)

• Floor Space: 5,400 ft2

• Annual Average Temperature: High 63.6F / Low 42.2F (Nov-Mar: 45.6F / 26.4F)

Average Annual Snowfall: 8'

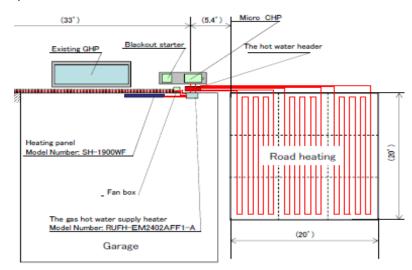
Electricity: Grid powerGas: Propane

Snowmelt Area: Garage entrance area (about 1,500ft2)

Primary Space Heating: AISIN gas heat pump system

CHP System Component: COREMO with black start system, tankless boiler

Application


- Generated power is fed back to the house, daily average use is around 600W/h.
- · Generated heat is put into snowmelt system installed in garage front driveway.
- If snowmelt system requires more heat, tankless boiler (135,000BTU) will kick-in.

Challenges

- · Automatic changeover during blackout.
- · Heat utilization during low heat demand months.
- Power storage to offset high/low electricity use period.
- Installation cost reduction.

Next Step

- Sync with Home Energy Management System (HEMS).
- Domestic hot water connection.

4. Pilot Project – Indiana (Semidetached)

Property Info

• System Installed: October 2015 (Outdoor)

Floor Space: 1,300 ft₂ per unit

• Annual Average Temperature: High 63.6F / Low 42.2F (Nov-Mar: 45.6F / 26.4F)

Electricity: Grid connected

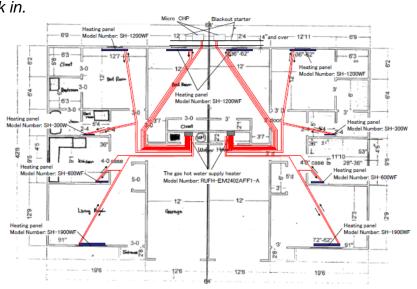
• Gas: Natural gas

Primary Space Heating: Gas furnace

Secondary Space Heating: Hydronic baseboard heater

CHP System Component: COREMO with black start system, tankless combi boiler

Application


- Generated power is fed back to the house, daily average use is around 300W/h.
- Generated heat is distributed through baseboard heater and pre-heats domestic hot water.
- If baseboard heater can not maintain set temperature, gas furnace will kick in.
- If higher temperature hot water is needed, tankless boiler will kick in.

Challenges

- Automatic changeover during blackout.
- Heat utilization during low heat demand months.
- Power storage to offset high/low electricity use period.
- Balancing heat supply per load.

Next Step

- Sync with Home Energy Management System (HEMS).
- Configure variable heat supply.

5. Pilot Project – Michigan (Detached)

Property Info

• System Installed: October 2015 (Basement)

• Floor Space: 5,600 ft2

Annual Average Temperature: High 57.6F / Low 38F (Nov-Mar: 38F / 21.8F)

Average Annual Snowfall: 44"

Electricity: Grid connected

Gas: Natural gas

Snowmelt Area: Garage entrance area (about 2,300ft2)

• Snowmelt System (Zone-1): 200,000 Btu tankless boiler

Snowmelt System (Zone-2): COREMO, tankless combi boiler

Application

- Generated power is fed back to the house, daily average use is around 500W/h.
- Generated heat is put into zone-2 snowmelt system installed in garage front driveway.
- If zone-2 calls for more heat, tankless combi boiler (69,000Btu) will kick-in.

Challenges

- Snowmelt system commissioning.
- · Heat utilization during low heat demand months.
- Power storage to offset high/low electricity use period.
- Installation cost reduction.
- Dedicated air intake.

Next Step

- Sync with Home Energy Management System (HEMS).
- Domestic hot water connection.

6. Pilot Project – Alberta (Detached House)

Property Info

• System Installed: September 2016 (Outdoor)

• Floor Space: 4,800 ft2

Annual Average Temperature: High 49.1F / Low 27.0F (Nov-Mar: 29.0F / 8.5F)

Average Annual Snowfall: 3.5"
 Electricity: Off grid

PV capacityWind turbine capacity2.4 kW

Battery bank capacity 1200 amp/hour (48V)

Dump capacity 5.0 kW rated

Gas: Natural gas
Primary Space Heating: Gas furnace

Secondary Space Heating: Radiant floor heating

Application

- Generated power is fed back to the house, daily average use is around 400W/h.
- · Generated heat is put into radiant floor heating system.
- 5.0kW dump to prevent overcharging the battery system.

Challenges

- Snowmelt system commissioning.
- Heat utilization during low heat demand months.
- Power storage to offset high/low electricity use period.

Next Step

Sync with Home Energy Management System (HEMS).

状態データ		
エンジン冷却水ポンプ指示(%)	63	^
エンジン冷却水ポンプ回転数(mi	3860	
暖房循環ポンプ指示回転数(%)	66	
暖房循環ポンプ実回転数(min-1)	4156	
スロットル弁指示(step)	236	
燃料弁指示(step)	249	
エンジン指示回転数(min-1)	1750	
エンジン実回転数(min-1)	1749	≡
点火進角(*)	5.0	
燃料弁ベースマップ開度(step)	249	
スロットル弁上限補正値(step)	0	
燃料弁排気触媒温度低温補正	0	
エンジンルームファン回転数(min-1)	5061	

インバータデータ				
比力電力(W)	1500			
直流電圧(V)	362.1			
R-S間交流電圧(V)	205.4			
R-N相交流電圧(V)	102.0			
i-N相交流電圧(V)	103.3			
3立発電電圧	0.0			
比力電流(A)	7.3			
系統電力1(W)	-547			
系統電力2(W)	-258			
(ンバータ温度(℃)	14			
(ンバータヒータ温度(°C)	0			
(ンバータ直流分(mA)	9			
を電リミット指示(W)	1500			

7. Design & Installation Challenges

- Who is to install?
 - Electrician? Plumber? HVAC?
- What is the adequate installation cost?
 - Quotes ranged from \$2,000 to \$8,000
- "As-built" or "pre-designed"?
 - Simple installation can be "as-built" to save cost
- Efficient heat utilization
 - How do you distribute heat efficiently?
- Systemize with other technology (PV, wind, battery bank, etc.)
 - How many inverters really needed?
- Balance-of-system
 - How can we create a best method?

8. After Service Challenges

- Electrician, plumber, and HVAC contractor may get involved during MCHP installation.
 - Who will take care the after service?
- Typically, service calls are initiated by customers.
 - Utilize "IoT" for service network. Be proactive.
 - Remote monitoring, data collection, error/service notification, etc.

<u>Manufacture</u>	Service Contractor	End User
R&D	Service Efficiency	Reliability
Warranty	Operation Saving	Controllability
Service Quality	Customer Satisfaction	Energy Consciousness
Record Accuracy		Satisfaction
Customer Satisfaction		

- Standardized training program
 - Schools, institutes, associations, organizations, etc.

9. Keys to MCHP Future

- Government & utility incentives
 - Carbon credits, tax credits, rebates, etc.
- Equipment lease & finance program
 - What are the obstacles?
- Emission regulations (Federal, States, districts)
 - What to expect after 2020.
- Smart energy integration
 - Can a MCHP be a part of it in electrical appliance turf?
- Public recognition
 - Mass or niche marketing?
- Sales channel
 - Distributor, dealer, direct, DIY, etc.

Thank You

Aisin World Corp. of America Life & Energy Dept. Yoshi Sekihisa 15300 Centennial Drive, Northville, MI 48168 734-582-5409 ysekihisa @aisinworld.com