Methane Emissions from Combustion Sources / Natural Gas Engines

Bryan Willson
Director - Colorado State University Energy Institute
Professor of Mechanical Engineering
Presidential Chair in Energy Innovation
ARPA-E REMEDY Workshop

October 20, 2020
Personal Background

- Founding Director, CSU Energy Institute
- Founding Director, CSU Engines & Energy Conversion Lab, CSU Powerhouse Energy Campus
- Professor of Mechanical Engineering
- Presidential Chair in Energy Innovation
- ARPA-E
 - Program Director, 2012-2016
 - SGE, 2017-2019
 - Founding Program Director for MONITOR program on detection of methane emissions
Organizational Background

- **Industrial natural gas engines**
 - Slow-speed 2-stroke engines for natural gas pipelines
 - Medium-speed 4-stroke engines for power generation
 - High-speed 4-stroke engines for vehicles
Relevant Natural Gas Combustion Sources

- **External Combustion**
 - 😊 Boilers
 - 😞 Flares

- **Internal Combustion**
 - 😊 Gas Turbines
 - 😊 😞 😞 Reciprocating Engines
 - 4-stroke engines
 - Stoichiometric
 - Lean-burn
 - 2-stroke lean-burn
Approx. 9% of CH$_4$ emissions from natural gas transmission is from methane slip.

Over half of compression power is from gas turbines, which eliminate little CH$_4$.

Highlights CH$_4$ emissions from reciprocating engines.

40% of CH$_4$ emissions from natural gas gathering stations are from methane slip from engines / combustion.
CH$_4$ Slip Depends on the Technology Can Overcome any GHG Benefit

Impact of engine methane emissions on net GHG benefit of natural gas engines GHG benefit relative to diesel. Methane GWP = 34
Mechanisms

- Highly stable molecule produces “quenching” in cylinder
 - Near “cold” combustion chamber wall
 - In crevices such as region above piston rings
 - Normal center combustion “pushes” unburned methane into crevice zones
- Absorption / desorption into oil film on piston walls
- Low catalyst efficiency with conventional oxidation / three-way catalysts
Current Catalysts Need

- Current catalysts need exhaust temperatures near 500°C.
- Catalyst performance degrades over time, particularly in presence of sulfur.
- Temperature range of natural gas engines:
 - 2-stroke lean burn
 340°C – 400°C
 - 4-stroke lean burn
 400°C – 600°C
 - 4-stroke stoichiometric w/o EGR
 500°C – 600°C
 - 00°C
 - 4-stroke stoichiometric w/ EGR
 450°C – 550°C

Methane oxidation efficiency for different precious metals versus temperature

Majewski, et al. Methane Oxidation Catalysts

https://dieselnet.com/tech/catalyst_methane_oxidation.php#app
Potential Approaches

In-cylinder
- Reduced crevice volume (CV)
- Combustion chamber redesign
- Injection scheme to reduce fuel in CV
- Ignition strategies to reduce packing of fuel into CV
- Higher wall temp
- Improved fuel characteristics (H₂, reformed fuel, etc.)

Aftertreatment
- Catalyst chemistry
- Catalyst heating / “activation” by other means
- CH₄ trap / regeneration