Methanotrophs/Biofilters

Mary Lidstrom
University of Washington
ARPA-E REMEDY Workshop

October 20·2020
Introduction/Background

- Jungers Professor of Chemical Engineering
- Professor of Microbiology
- University of Washington, Seattle

- For over 40 years, studied bacteria that grow on one-carbon compounds including methane and methanol
- Includes microbial physiology, genetics, genomics, metabolic engineering, microbial ecology, environmental communities
Methanotrophic Bacteria

Anaerobic: --use nitrate or sulfate as electron acceptor
--slow growth

Aerobic: --use O₂ as electron acceptor and for activation of methane
--have specialized metabolic pathways and enzymes
--Alpha- and Gamma-proteobacterial strains
 Methylomicrobium, Methylomonas, Methylobacter,
 Methylococcus, Methylosinus, Methylocystis
--verrucomicrobia, NC10
Aerobic Methanotrophs are Well-Studied

- Broad variety of strains available
 - High, medium, or low pH
 - High, medium, or low temperature
 - Salt-requiring or nonsalt-requiring
 - Most can only grow on one-carbon compounds; a few can grow on multicarbon compounds also

- Many grow very slowly; new strains grow well, easy to work with

- Metabolic pathways are well-known
 - Complete flux maps
 - Genome-scale metabolic models
 - Broad omics-level databases

- A variety of genetic tools and approaches

October 22, 2020
Methane Consumption in Nature

- Most habitats with some O_2 contain aerobic methanotrophs, consume methane
- Some strains adapted to low methane, some to low O_2
- In many soils and aquatic habitats, methane is consumed by a community of bacteria

\[
\text{CH}_4 \rightarrow \text{Methanotroph: } \text{Methylobacter (gamma-prot.)} \rightarrow \text{excreted } \text{CH}_3\text{OH} \rightarrow \text{Non-methanotrophic methylotrophs: } \text{Methylotenera (beta-proteobacteria)}
\]

Oshkin et al., 2014. ISME J; Krause et al., 2017 PNAS
Methane Consumption From the Atmosphere

- Soils consume methane due to methanotrophs
- Some soils are net consumers from the atmosphere

- Recently isolated *Methylocapsa* strains grow at atmospheric methane concentrations
- Whole cell K_m for methane is similar to other methanotrophs ($\sim 1 \mu M$)

 Tveit et al., PNAS 2020

Possibility: enhance by adding nutrients (biofertilizer)

Questions: duration, other ecosystem effects
Methane Capture to Reduce Atmospheric Methane

Major Challenges:

1) Scale
imbalance ~17 Tg/yr or 17 millions tons/yr
(Global Carbon Project)

2) Low concentration in the atmosphere
 1.87 ppm = 0.000187%
 dissolved in water ~ 2 nM
 best K_m ~ 1 μM
Consuming Methane From Above Emission Sources

- Methane levels needed for stable methane consumption by known strains: ~500 ppm

- Methane is enriched to 500 ppm over methane-generating entities
 - Landfills
 - Feedlots
 - Coal Mines

- US alone has over 15,000 of such entities

Questions:
 type of treatment system, cultures, optimal variables

Provides an approach to methane capture
Methane Biofilters

• Systems for removing methane from gas streams
• Use methanotrophs, usually in a community
• Many variables
 pH, temperature, flow rate, inlet gas %, residence time, water content, packing material, community composition, nutrients provided
• Generally, low cost, high removal >70-90%

Questions: optimal variables, durability (time of operation)

La et al, Biores Tech 2018
Methane Concentration vs. Treatment Options

- >5%: can be flared or used for energy
 - from digestors (sewage treatment, feed lots)
 - from piped landfills

- 1-5%: existing technology
 - factory sources
 - natural gas wells
 - coal mines

- <1%: need new technology
 - air over emission sites
SUMMARY

- Methanotrophs consume methane in natural environments
- Past decade has seen major advances in understanding of methanotrophs, their metabolism and enzymes, and their role in nature
- Opportunities exist for both natural and engineered systems to consume methane