Gas Fermentation at Calysta

Intro for REMEDY workshop
October 20, 2020
Gas Fermentation is the Next Step in Industrial Biotech

• Lower cost feedstocks are needed for biological products to compete with petroleum derivatives

• C1 feedstocks (CH$_4$, CO, CO$_2$) are accepted to be among the cheapest sources of carbon

• C1 feedstocks are generally pollutants, with significant safety and solubility issues compared to traditional biofeedstocks

• Calysta owns the world’s only commercially-validated gas fermentation technology allowing use of C1 feedstocks
Calysta’s Methanotroph Platform

Methylococcus capsulatus Bath

- Gammaproteobacteria, type I methanotroph
- Relatively fast growth rate (methane:oxygen mix)
- Genome sequence available
- Amenable to genetic manipulation
- Only methanotroph proven at commercial scale
- Variety of formats for strain testing: well plates, pressure bottles, 2L fermenters
- Amended media and optimized feeding strategies produce high cell densities in small scale.
Calysta’s Platform: Strain Engineering

Calysta has developed a set of novel engineering tools for methanotrophs:

- Reporter genes

<table>
<thead>
<tr>
<th>Empty Vector</th>
<th>P16hps Comet</th>
<th>PT5 Comet</th>
<th>Pmfp Comet</th>
<th>Pmfp Dasher</th>
<th>Pmfp Magenta</th>
<th>Pmfp Purple</th>
</tr>
</thead>
</table>

- Plasmids that replicate both in methanotrophs and in *E. coli*
- Constitutive and inducible (low/med/high) promoters
- Techniques for chromosomal knockin and knockouts
Calysta Performs Methanotrophic Fermentation at All Scales

High Throughput

Fermentors

NorFerm Commercial Plant

China Plant

TPP

Nanjing Demo Lab

Calysta
Calysta FeedKind Production Process

Fermentation

- Gases are mixed in a proprietary fermenter where they are consumed by Calysta's natural microorganisms, which form the basis of *FeedKind* protein.

Separation

- *FeedKind* protein is separated from the aqueous media in which it is grown, with water and nutrients returned back to the fermenter.

Drying and Packaging

- *FeedKind* protein is dried and packaged per customer specifications.

Distribution

- Products are shipped to be fed to fish and livestock worldwide.

FeedKind
FeedKind Protein Commercial Samples Shipping Worldwide from Teesside UK Plant

- Production of ~50 tons/year
- Shipping commercial samples to customer and partners worldwide
- Facility is a “scale-down” of the original Tjeldbergodden, Norway reactor, demonstrated to produce at a rate of 10,000 mtpa
- Successful maintenance of 12+ weeks of continuous fermentation, exceeding design parameters for key commercial metrics such as yield and productivity
- Partnered with Center for Process Innovation (“CPI”) to provide on site services and well trained staff
FeedKind® is a Natural, Non-GMO Protein Source

FeedKind Protein is composed of naturally occurring microorganisms that metabolize methane as their sole source of carbon and energy, producing a nutritious, high-protein biomass.

✓ **FeedKind is a non-GMO source of protein obtained by natural fermentation**

EU Register of Feed Ingredients, 2017

| 12.1.2 | Product from *Methylococcus capsulatus* (Bath), *Alcaligenes eutrophus* and *Bacillus firmus* rich in protein (1) (2) | Fermentation product obtained by culture of *Methylococcus capsulatus* (Bath) (NCIMB strain 11132), *Alcaligenes eutrophus* (NCIMB strain 13287), *Bacillus brevis* (NCIMB strain 13288) and *Bacillus firmus* (NCIMB strain 13289) on natural gas (approx. 91 % methane, 5 % ethane, 2 % propane, 0.5 % isobutane, 0.5 % n-butane), ammonia, and mineral salts, the crude protein is at least 65 %. | Crude protein | Crude ash | Crude fat | Propionic acid if > 0.5 % |

✓ **Approved in the EU, Japan and Australia**
✓ **Can be used in Canada and in the Philippines**
✓ **On-going regulatory process in the USA**
✓ **Additional countries in process**
Calysta Commands a Leading IP Position, Creating Significant Barriers-to-entry

- >50 granted patents with over 100 pending applications covering more than 22 patent families
- Strong claims covering proprietary reactor design that have already invalidated one potential competitor’s patent
- Broad claims granted in 2016 covering biological production of any chemical from natural gas
- Aggressively filing on new gas fermentation reactor designs and improvements with 4 new issued patents and 15 applications in the area
- 38 pending applications in the area of animal feed