

Reflection Insensitive Quantum Dot Lasers Grown on Silicon Substrates

John Bowers

Art Gossard, Songtao Liu, Justin Norman, Yating Wan, Chen Zhang, Robert Zheng Bob Herrick (Intel) Weng Chao (Sandia) Frederic Grillot (U. Paris)

November 1, 2019

Project Team

- Silicon Photonics Research Group at UCSB
 - State of the art equipment for the characterization and packaging of a wide range of semiconductor devices and optical communication systems

UCSB Nanofab

- >10,000 ft² of Class 100 and 1000 cleanroom space
- Optical lithographic capability to 200 nm

UCSB Growth Facilities

- 30 years of pioneering MBE research
- 9 MBE systems with two dedicated to III-Vs
- California Nanosystems Institute
 - Advanced material characterization tools
 - ECCI, TEM, AFM, XRD, SIMS, atom probe

Collaborators

Frederic Grillot, ParisTech

- Laser dynamics, feedback stability

Robert Herrick, Intel Corp.

- Laser reliability and aging
- Matteo Meneghini, Univ. of Padova
 - Laser reliability and aging

Weng Chow, Sandia

 Laser theory for linewidth enhancement factor and modelocking

Project Objectives Achieve High Performance Epitaxial Lasers on Silicon

- Leverage silicon manufacturing infrastructure
 - Photonics in CMOS foundries
 - Economical, high integration density photonic circuits
- Indirect bandgap necessitates III-Vs for lasers
 - Heterogeneous integration: high cost, limited scalability
 - Epitaxial growth: low cost, scalable with Si wafer size

Why Quantum dot lasers?

Lower threshold
 Higher temperature operation (220C)
 Lower diffusion length (enables smaller devices
 Less sensitivity to defects (important for growth on Si)
 Lower linewidth enhancement factor-narrower linewidth
 Lower reflection sensitivity

Heteroepitaxial Challenges

Crystal lattice mismatch

- High density of dislocations, antiphase domains

Thermal expansion mismatch

- Cracking, residual strain, dislocations

Bulk GaAs: a = 0.565 nm

Quantum Dots Enable High Performance

- III-V/Si laser research has existed for 30 years
 - Most reliable QW/Si laser has ~200 h lifetime for GaAs/Si materials
- Quantum dots represent breakthrough for high performance on Si
 - >10 M hour lifetime at 35C
 - Ultrashort (500 nm) in-plane diffusion lengths

Project Objectives

Advanced Capabilities

- High temperature operation
- Sidewall insensitive
 - Small footprint
- High performance mode-locked lasers
 - Ultrafast gain recovery, high four-wave mixing
- Ultralow linewidth enhancement factor
 - Narrow linewidth
 - Reflection insensitivity

Project Objectives

Applications

Low cost, small footprint, efficient transmitters

- Datacenters, HPC, LIDAR, etc.

Isolator-free Lasers

- Save cost and footprint

Optimized III-V/Si Templates

- Thermal cycling and defect filter layers
 - Antiphase domain free on-axis (001) Si
 - 7×10⁶ cm⁻² dislocation density
- Ongoing optimization \rightarrow 2×10⁶ cm⁻²

Optimized Quantum Dot Active Region

InAs dots in In_{.15}Ga_{.85}As well

O-band emission achievable from ~1260-1320 nm

Inhomogeneously broadened gain spectrum

- Dots form via self-assembled growth
- Large, coupled parameter space to optimize

Highly Efficient Lasers

Small-footprint microring cavities

- Sidewall insensitive
- Sub-milliampere threshold current
- High wall-plug efficiency Fabry-Perot lasers

P-type Modulation Doping

- Band offsets leave holes weakly confined in dots
 - Add active region doping to offset thermalization
 - ~10-30 holes per dot
- Significantly increases gain, differential gain
 - Critical to high temperature reliability & low linewidth enhancement factor
 - Costs higher threshold, lower slope efficiency, ~10-20% WPE

COMPARISON OF 3 RELIABILITY TESTS AT 35C

Herrick et al.(Intel, UCSB) OFC 2019

Reliability at 60°C

- Need reliable operation at elevated temperatures
- Datacenters & HPC applications at 60-80°C or higher
- First aging test at 60 °C shows lifetime of ~2500 hours

Summary of 60 C Reliability (300-hour)

- Varied p-doping levels in active region
 - P=5e17 cm⁻³ to p=1.5e18 cm⁻³
- Highly improved lifetimes from 60°C aging
 - >>10,000 hours extrapolated lifetime

Still Defect Limited

COMPARISON OF 5 RELIABILITY TESTS AT 60C

Herrick et al.(Intel, UCSB) OFC 2019

High Performance Optical Amplifiers

- Columbia Enlitened Project
- 39 dB ground state gain (>20 dB at 70°C)
- Noise figure as low as 6.1 dB
- Wall-plug efficiency up to 20%

 I_{gain} = 750 mA, T = 20°C, L = 5000 $\mu\text{m}\text{,}$ tapered width 5 μm \rightarrow 11 μm

Mode-Locked Combs for Data Transmission

- Quantum dots uniquely suited to MLLs
 - Ultrafast gain/absorber recovery
 - Broad, engineerable gain bandwidth

S. Liu, et al. Optica, 6(2), 2019

4.1 Tbps from Single Laser

- 64 channel, 32 Gbaud Nyquist pulse shaped PAM-4
- 61 channels below HD-FEC, 64 below SD-FEC
- 4.1 Tbps

100 GHz Colliding Pulse MLL

- 5th harmonic design
- Wide mode-locking range
 - < 2.5 ps and >8 dB pulsecontrast ratio

0.9 Tbps from Single Laser at 100 GHz

- 8 channels w/56 Gbaud Nyquist pulse shaped PAM-4
- Autocorrelator confirms 100 GHz

Quantum Dots for Low Linewidth Enhancement Factor

- Quantum dots have inherently low LEF
 - Symmetric density of states
 - Identically zero from Kramers-Kronig

Inhomogeneous Broadening Increases LEF

Accomplishments Experimental Ultralow Linewidth Enhancement Factor

Alpha factors of QD Si lasers show ~0.15 with p-doping

Quantum wells typically ~3-5

High Critical Feedback Level

• High damping and low α_H yield high feedback tolerance

²⁵ Zhang, et al. J. Sel. Top. Quant. Electron. 25(6), 2019.

Feedback Insensitive Operation

- 7 m feedback
- Bias at 3×I_{th}, up to 100% backreflection (-10% tap)
- Quantum dot device perfectly stable
- **Quantum well** undergoes coherence collapse at < 2%

Short-Cavity Regime

- P-doped laser stable in short cavity regime: $\frac{f_{RO}}{f_{ext}} = \frac{3 \text{ GHz}}{5 \text{ GHz}} < 1$
- Movable mirror
 - Feedback up to 20.8% (coupling limited)
 - Cavity length 3 cm

Feedback Insensitive Transmission

Quantum Well Laser Quantum Dot Laser NJ/ 10⁻⁴ 10⁻⁴ Solitary B2E 100 150 200 10⁻⁶ 10⁻⁶ C) 200 150 BER 10⁻⁸ 10⁻⁸ 10⁻¹⁰ **10⁻¹⁰** Solitary B2B 200 150 Solitary B2B 100% Refl. B2B 0.02% Refl. B2B Solitary Trans. 10⁻¹² 10⁻¹² 2% Refl. B2B 100% Refl. Trans. (a -16 -12 -8 -12 -8 **Received Power (dBm)**

Future Prospects

Waveguide integration

- All-epitaxial photonic integrated circuits

>60°C reliability

- Need lower dislocation density
- Native substrate devices reliable >80°C

Single-mode lasers

- Feedback insensitive, narrow linewidth DFBs
- Achieve zero linewidth enhancement factor above threshold
 - Careful engineering of threshold modal gain and inhomogeneous broadening

T2M – Market Opportunity

Silicon photonics market expected to grow to \$2B by 2023

- Datacom projected 90% of market (\$6B by 2025)
- Major players: Acacia (US): Luxtera (US), Intel (US), Cisco (US), Mellanox (Israel/US), Finisar (US), STMicroelectronics (Switzerland), Hamamatsu (Japan), IBM (US), Juniper (US), GlobalFoundries (US), Broadcom (US), Oclaro (US), NeoPhotonics (US), Ciena (US)

T2M – Market Opportunity

Google, Cisco want PAM4 format now

Looking at QPSK (and higher-level modulation) in the future

Datacenter Example– Google Interconnect Scaling large data center interconnects..., Zhou 2017

T2M – Datacom Market Opportunity

Facebook currently upgrading to 100 and 200 GB/s transceivers

Technology-to-Market

T2M – Cost Model

Silicon PIC/External Lasers (Luxtera)

- Laser: \$8 + \$7 alignment = \$15
- Isolator: \$8 + \$7 alignment = \$15
- Wafer fab = \$22k
- Mask cost (300mm) = \$250k

3

3

Submitted IP

Technology-to-Market

- Three patent applications filed
- Integration of direct-bandgap optically active devices on indirect-bandgap-based substrates
 - Methods of integrating epitaxial III-V devices with Si waveguides
- Monolithic integrated quantum dot photonic integrated circuits
 - Epitaxial III-V based approach to integration on silicon
- Quantum dot lasers and methods for making the same
 - Methods of growth for avoiding strain relaxation in the laser active region

Commercialization Prospects

Technology-to-Market

Quintessent, Inc.

New startup leveraging research from OPEN2015

Manufacturing semiconductor laser optical engines

- Advanced quantum dot materials and laser architecture for high bandwidth communications
- Closed seed round and developing prototypes

QUINTESSENT

Conclusion/summary slide

- Reduction in threading dislocation density from 7e6 cm⁻² to 2e6 cm⁻² in GaAs
- High performance QD FP laser on on-axis Si
 - Wall plug efficiency of 38.4%
- Reliability results at 60 °C aging tests
 - Extrapolated lifetime longer than >8 years
- Efficient semiconductor optical amplifiers
- 4.1 Tbps system demonstration from a single QD mode locked laser
- Reduction in subthreshold linewidth enhancement factor to near-zero in uniform p-doped QD laser
- Isolator-free transmitter demonstrated: zero errors with 100% reflection
- Promising pathways to commercialization

Supplementary Slides

Mode-Locking Regime

- Threshold current 34 mA (0 V SA) \rightarrow 40 mA (-2 V SA)
 - Series resistance ~4 Ω

Wide mode-locking range

- < 2.5 ps and >8 dB pulse-contrast ratio

Excellent RF Performance

Publications in 2019

- 1. Auth, D., et al. (2019). "Passively mode-locked semiconductor quantum dot on silicon laser with 400 Hz RF line width." Optics express 27(19): 27256-27266.
- 2. Buffolo, M., et al. (2019). "Investigation of Current-Driven Degradation of 1.3 μm Quantum-Dot Lasers Epitaxially Grown on Silicon." IEEE Journal of Selected Topics in Quantum Electronics 26(2): 1-8.
- 3. Liu, S., et al. (2019). "High-Performance O-band Quantum-Dot Semiconductor Optical Amplifiers Directly Grown on a CMOS Compatible Silicon Substrate." ACS Photonics.
- 4. Selvidge, J., et al. (2019). "Non-radiative recombination at dislocations in InAs quantum dots grown on silicon." Applied Physics Letters 115(13): 131102.
- 5. Huang, *et al.,* "Defect characterization of InAs/InGaAs quantum dots pin photodetector grown on GaAs-on-V-grooved-Si substrate", ACS Photonics, May 1, 2019.
- 6. Chow, *et al.*, "Theory of spontaneous mode locking and frequency comb generation in a semiconductor quantum-dot laser", submitted 2019
- 7. Vega-Flick, *et al.*, "Reduced Thermal Conductivity of Epitaxial GaAs on Si due to Symmetry-breaking Biaxial Strain", Submitted to Physical Review Materials (2019).
- 8. Zhang, *et al.*, "Linewidth enhancement factor in InAs/GaAs quantum dot laser and its implications in isolator-free and narrow linewidth applications", IEEE Journal of Selected Topics in Quantum Electronics, May 22, 2019.
- 9. Jung, *et al.*, "Recent Advances in InAs Quantum Dot Lasers Grown on on-axis (001) Silicon by Molecular Beam Epitaxy", *Physica Status Solidi A*, (216)1, 1800602, January 9, 2019.
- 10. Norman, *et al.*, "A Review of High-Performance Quantum Dot Lasers on Silicon", invited paper, *Journal of Quantum Electronics*, 55(2), February 26, 2019.
- 11. Liu, *et al.*, "High-channel-count 20 GHz passively mode locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity", Optica (6)2, 128-134, February 20, 2019.
- 12. Duan, et al., "1.3-um Reflection Insensitive InAs/GaAs Quantum Dot Lasers Directly Grown on Silicon", Photonics Technology Letters January 25, 2019

Publications in 2018

- 1. Heming *et al.* "Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon", JOSA B, 2018
- 2. Inoue *et al.* "Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot pin photodiode grown on on-axis (001) GaP/Si", Applied Physics Letters, 2018
- 3. Callahan *et al.* "Direct observation of recombination-enhanced dislocation glide in heteroepitaxial GaAs on silicon", Physical Review Materials, 2018
- 4. Zhang *et al.* "Effects of modulation p doping in InAs quantum dot lasers on silicon", Applied Physics Letters, 2018
- 5. Wan *et al.* "Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability", Photonics Research, 2018
- 6. Liu *et al.* "Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si", Applied Physics Letters, 2018
- 7. Duan *et al.* "Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor", Applied Physics Letters, 2018
- 8. Jung *et al.* "Effect of growth interruption in 1.55 μm InAs/InAlGaAs quantum dots on InP grown by molecular beam epitaxy", Journal of Applied Physics, 2018
- 9. Jung *et al.* "Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si, Applied Physics Letters, 2018
- 10. Liu *et al.* "490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si, Electronics Letters, 2018
- 11. Inoue et al. "Directly modulated 1.3 µm quantum dot lasers epitaxially grown on silicon", Optics Letters, 2018
- 12. Norman *et al.* "Perspective: The future of quantum dot photonic integrated circuits", APL Photonics, 2018
- 13. Wan, *et al.*, "Low-Threshold Continuous-Wave Operation of Electrically-Pumped 1.55 μm InAs Quantum Dash Microring Lasers," ACS Photonics, 2018.
- 14. Buffolo, *et al.*, "Physical Origin of the Optical Degradation of InAs Quantum Dot Lasers", submitted to Journal of Quantum Electronics, 2018.

Publications in 2017

- 1. Liu, *et al.*, "Electrically pumped continuous wave 1.3 mm quantum dot lasers epitaxially grown on on-axis (001) GaP/Si", *Optics Letters*, (42)2, 338-341, January 12, 2017
- 2. Norman, *et al.*, "Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si", *Optics Express*, (25)4, 3927-3934, February 20, 2017
- **3.** Liu, *et al.*, "Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon", *Optics Express*, (25)9, 9535-9543, May 1, 2017.
- 4. Wan, *et al.*,"1.3 μm submilliamp threshold quantum dot microlasers on Si", *Optica*, (4)8, 940-944, August 2017.
- 5. Jung, *et al.,* "High efficiency low threshold current 1.3 µm InAs quantum dot lasers on onaxis (001) GaP/Si", *Applied Physics Letters*, (111)12, 122107, September 21, 2017.
- 6. Wan, et al., "O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si", Optics Express, (25)22, 26853-26860, October 30, 2017.
- 7. Wan, *et al.*, "Monolithically Integrated InAs/InGaAs Quantum Dot Photodetectors on Silicon Substrates", *Optics Express*, (25)22, October 30, (2017).
- 8. Jung, *et al.*, "Low threading dislocation density GaAs growth on on-axis GaP/Si (001) by molecular beam epitaxy", *Journal of Applied Physics*, (122), 225703, December 12, 2017.
- 9. Jung, *et al.*, "Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency," *ACS Photonics*, (5)3, 1094-1100, December 18, 2017.

Publications in 2015-2016

- Chow, et al., "Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers" Applied Physics Letters, (107), 171106, 2015
- Liu, et al., "Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon" IEEE Journal of Selected Topics in Quantum Electronics, (21)6, 1900708, 2015
- Wan, et al. "Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon", Optics Letters, (41)7; 1664-1667, 2016
- 4. Wan, *et al.*, "Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates", *Applied Physics Letters*, (108), 221101, 2016.
- Li, et al., "1.3-µm InAs quantum-dot micro-disk lasers on Vgroove patterned and unpatterned (001) silicon," Optics Express, (24)18, 21038-21045, 2016.

Conference Presentations in 2019

- 1. Duan, J., et al. (2019). Relative intensity noise of silicon-based quantum dot lasers. 2019 Compound Semiconductor Week (CSW), IEEE.
- 2. Fitch, C. R., et al. (2019). Thermal characteristics of 1.3 um InAs-based quantum-dot lasers on silicon substrates (Conference Presentation). Novel In-Plane Semiconductor Lasers XVIII, International Society for Optics and Photonics.
- 3. Liu, S., et al. (2019). 100 GHz colliding pulse mode locked quantum dot lasers directly grown on Si for WDM application. CLEO: Applications and Technology, Optical Society of America.
- 4. Shang, C., et al. (2019). Triple reduction of threshold current for 1.3 μm InAs quantum dot lasers on patterned, on-axis (001) Si. CLEO: Science and Innovations, Optical Society of America.
- 5. Shang, C., et al. (2019). Triple reduction of threshold current for \$1.3\mu\mathrm {m} \$ in as quantum dot lasers on patterned, onaxis (001) Si. 2019 Conference on Lasers and Electro-Optics (CLEO), IEEE.
- 6. Wan, Y., et al. (2019). Low threshold 1.55 μm Quantum dash microring lasers. CLEO: Science and Innovations, Optical Society of America.
- 7. Bowers, *et al.*, "Mode-Locked Quantum Dot Lasers Epitaxially Grown on Si", **Invited Paper**, Physics of Quantum Electronics, Snowbird (2019).
- 8. J. Bowers, "Realities and Challenges of III-V/Si Integration Technologies", **Invited Paper**, OFC, 2019.
- 9. Fitch, et al., "Thermal characteristics of 1.3 µm InAs-based quantum dot lasers on silicon substrates" Photonics West 2019
- 10. Grillot, *et al.*, "Linewidth broadening factor and optical feedback sensitivity of silicon based quantum dot lasers," OPTO, SPIE Photonics West, 2019.
- 11. Buffolo, *et al.*, "Degradation mechanisms of InAs quantum dot 1.3 μm laser diodes epitaxially grown on silicon", SPIE Photonics West 2019.
- 12. Herrick, et al., "Reliable heterogeneous and monolithic integrated silicon photonics," Invited Paper, OFC, 2019
- 13. Wu, *et al.*, "Terabit interconnects with a 20-GHz O-band passively mode locked quantum dot laser grown directly on silicon" OFC, 2019
- 14. Liu, et al., "A Low-noise High-channel-count 20 GHz Passively Mode Locked Quantum Dot Laser Grown on Si", OFC, 2019

Conference Presentations in 2018

- 1. Norman *et al.* "High performance quantum dot lasers epitaxially integrated on Si", SPIE QCQI, 2018
- 2. Marko et al. "Physical Properties of 1.3 µm InAs-Based Quantum Dot Laser on Silicon", ISLC, 2018
- **3**. Zhang *et al.* "Gain Characterization of p-Doped 1.3 μm InAs Quantum Dot Lasers on Silicon: Theory and Experiment", ISLC, 2018
- 4. Zhang *et al.* "Continuous Tuning of Gain Peak Linewidth Enhancement Factor from Negative to Positive with p Doping in InAs QD Laser on Si, ISLC **Postdeadline**, 2018
- 5. Jung *et al.* "InAs Quantum dot Lasers Epitaxially Grown on On-Axis (001) Silicon", Group IV Photonics, 2018
- 6. Liu *et al.* "9 GHz passively mode locked quantum dot lasers directly grown on Si, DRC, 2018
- 7. Shang *et al.* "Quantum dot micro-lasers integrated with photodetectors and optical amplifiers on (001) Si via waveguide coupling", CLEO, 2018
- 8. Bowers *et al.* "Quantum Dot Photonic Integrated Circuits on Silicon", CLEO, 2018
- 9. Zhang *et al.* "Gain Characterization and Parameter Extraction of 1.3 μm InAs Quantum Dot Lasers on Silicon", CLEO, 2018
- 10. Jung *et al.* "Highly Improved Reliability of Low Threshold 1.3 μm III/V Quantum Dot Laser Epitaxially Grown on On-axis Si", CLEO, 2018
- 11. Wan *et al.* "Quadruple reduction of threshold current density for micro-ring quantum dot lasers epitaxially grown on (001) Si", CLEO, 2018
- 12. Norman, *et al.*, "Reliable, feedback insensitive p-modulation doped quantum dot lasers epitaxially grown on CMOS compatible silicon substrates," ISPEC, 2018.

Conference Presentations in 2018 Cont.

- 1. Norman, et al., "96 GHz Colliding Pulse Mode-locked Quantum Dot Lasers Grown on Silicon" Best Student Paper, NAMBE 2018.
- Inoue, et al., "High-speed direct modulation of 1.3 μm InAs quantum dot laser grown on on-axis (001) Si substrate" JSAP Spring, 2018.
- **3.** Inoue, et al., "High-speed direct modulation of 1.3 μm InAs quantum dot laser grown on on-axis (001) Si substrate" JSAP Autumn, 2018.
- 4. Duan, et al., "Low linewidth enhancement factor and high optical feedback resistance of p-doped silicon based quantum dot lasers" IPC (2018).
- 5. Wan, et al., "On-chip detection from directly modulated quantum dot microring lasers on Si" PIERS 2018
- 6. Jung, et al., "High performance and reliable 1.3 μm InAs quantum dot lasers epitaxially grown on Si" **Invited Paper**, OECC (2018).
- 7. Norman, et al., InAs Quantum Dot Devices for Epitaxial Photonic Integrated Circuits on Silicon", ICMBE (2018)
- 8. Inoue, et al., "NRZ and PAM-4 direct modulation of 1.3 μm quantum dot lasers grown directly on on-axis (001) Si", ECOC, 2018.
- 9. Bowers, ""Low threshold, high gain 1300 nm quantum dot lasers epitaxially grown on Si", PQE **Invited Paper**, 2018.
- 10. Jung, et al., "High performance InAs quantum dot lasers grown on on-axis (001) Si with low threading dislocation density", **Invited Paper**, PCSI, 2018.
- **11.** Jung, et al., "Reliability study of InAs quantum dot lasers on Si", **Invited Talk**, MRS, 2018.
- 12. Duan, et al., "Silicon quantum dot lasers with long delay optical feedback", ISPALD, 2018.
- **13.** J. Bowers, "Quantum dot lasers on Si", **Invited Talk**, CSW, 2018

Conference Presentations in 2017

- 1. Bowers, *et al.*, "InAs/GaAs quantum dot lasers on exact GaP/Si (001) and other templates", **Invited Paper**, PQE, 2017.
- 2. J. E. Bowers and A. Y. Liu, "A Comparison of Four Approaches to Photonic Integration", OFC, 2017.
- **3.** Wan, *et al.*, "Quantum dot lasers grown on (001) Si substrate for integration with amorphous Si waveguides", OFC, 2017
- 4. Wan, *et al.*, "Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si", **Postdeadline**, CLEO, 2017.
- 5. Bowers, *et al.*, "InAs/GaAs quantum dot lasers on exact GaP/Si (001) and other templates", **Plenary Talk**, CS Mantech, 2017.
- 6. J. Bowers, "Evolution of Photonic Integrated Circuits," Plenary talk, DRC, 2017
- 7. J. Bowers, "A Comparison of Bonding and Growth for Heterogeneous Photonic Integrated Circuits", **Invited Talk**, IPC (2017).
- 8. John Bowers, "III-V on Si Lasers: Ready for Primetime?", ECOC, 2017.
- 9. Norman, *et al.*, "Low threshold epitaxial InAs quantum dot lasers on on-axis GaP/Si (001)," Best Student Paper, IPC, 2017.
- 10. Herrick, *et al.*, "Reliability of Quantum Well and Quantum Dot Lasers for Silicon Photonics, **Invited Talk**, IPC, 2017.
- 11. Jung, *et al.*, "High Efficiency Low Threshold Current InAs/GaAs Quantum Dot Laser Diodes", NAMBE 2017.
- 12. Norman, *et al.*, "The Impact of Threading Dislocation Density in InAs/GaAs Quantum Dot Lasers Grown on (100) Silicon, NAMBE 2017.
- 13. Bowers, *et al.*, "Reliable, High Efficiency, Low Threshold Current Quantum Dot Lasers ", ISPEC, 2017.

Conference Presentations in 2015-2016

- 1. Chow, *et al.*, "Gain-current relationships in quantum-dot and quantum-well lasers: theory and experiment", IPC, 2015.
- 2. J. E. Bowers, "Epitaxial Growth of Quantum Dot Lasers on Silicon", **Invited Paper**, ISPEC, 2015.
- **3.** J. E. Bowers, "Understanding Silicon Photonics", **Tutorial**, DesignCon, 2016.
- 4. Wan, *et al.,* "Room Temperature CW 1.3 µm Single Mode Lasing of InAs Quantum Dot Micro-disk Lasers Grown on (001) Si", CLEO, 2016.
- 5. Liu, *et al.*, "1.3 μm quantum-dot micro-disk lasers directly grown on (001) silicon", **Postdeadline**, ICMBE, 2016.
- 6. J.E. Bowers, "III-V on Silicon Photonic Integrated Circuits" **Tutorial,** IPC, 2016.
- 7. Liu, *et al.*, "Electrically pumped continuous wave III-V quantum dot lasers epitaxially grown on exact GaP/Si (001)", **Postdeadline** paper, ICMBE, 2016.
- 8. Liu, *et al.,* "InAs/GaAs quantum dot lasers on exact GaP/Si (001)" **Postdeadline**, NAMBE, 2016.
- 9. Liu, *et al.*, "Electrically pumped continuous wave 1.3 μm quantum dot lasers epitaxially grown on on-axis (001) Si", **Postdeadline** paper, ICMBE, 2016.
- 10. Jung, *et al.,* "InAs Quantum Dot Laser Diodes Grown on on-axis Silicon", **Invited Paper,** ISPEC, 2016

