

Half-baked Methane Higher Value and Lower Emissions through Pyrolysis

Marc von Keitz, Ph.D.

Program Director

How can we maximize the benefits from U.S. gas wealth?

February 28, 2017

Existing ARPA-E Nat Gas programs

MOVE

Gas storage tanks and **at-home refueling stations** for passenger cars

REMOTE

GENSETS

Natural gas fueled residential Combined Heat & Power – **CHP**

biological Gas-to-Liquid – **bioGTL**

New Idea: GTGAS (Gas-to-Gas-and-Solid)

Methane as a hydrogen repository

Hydrogen represents

1/4 of the weight, but

1/2 of the energy

 CH_4

Hydrogen in fuel cells provides very efficient electricity...

...for mobile...

... and stationary applications

February 28, 2017

We already make Hydrogen from methane at large scale for..

Ammonia Production (Haber-Bosch)

Petroleum Refining

GTL

Challenges: economical only at large scale & CO₂ emissions

Alternative Approach: Thermal Cracking of Methane

February 28, 2017

CO₂ vs Solid Carbon from 1 Quad of Hydrogen

 $SMR - CO_2$

Image: pbs

70 million MT @1,200 psi **117 million m³**

Image: dpa

22.3 million MT ~ 45 million m^3

What's the better value proposition: CO₂ or solid Carbon?

 CO_2

Baseline: \$0 per ton

Enhanced Oil Recovery: ~ \$40/ton

Carbon Capture & Storage: negative \$

Solid Carbon

Metallurgical coal: \$100/MT Carbon black: \$500-\$2,500/MT Carbon nanotubes: \$1,000,000/MT

What's the better value proposition: CO₂ or solid Carbon?

 CO_2

Baseline: \$0 per ton Enhanced Oil Recovery: ~ \$40/ton

Carbon Capture & Storage: negative \$

Solid Carbon

>\$2,000 per karat (>\$10,000,000/MT)

February 28, 2017

Total world market:

- Carbon Black:
- Copper:
- Cotton:
- Aluminum:
- Polyolefins:
- Steel:
- Concrete:

- 12 million MT/yr 19 million MT/yr 24 million MT/yr
- 49 million MT/yr
- 120 million MT/yr
- 1,600 million MT/yr
- ~20,000 million MT/yr

...but, it's hard to compete with dirt.

Remember: 1 Quad $H_2 \sim 22.3$ million MT C

Carbon materials could enable low-cost composite buildings

Carbon to building products can be alternative to CO₂ sequestration

Wing House, Asymptote Architecture

One possible path: Methane to CNTs to Carbon Fiber

NATURE VOL 395 29 OCTOBER 1998 Synthesis of individual singlewalled carbon nanotubes on patterned silicon wafers

Jing Kong*†, Hyongsok T. Soh†‡, Alan M. Cassell*, Calvin F. Quate‡ & Hongjie Dai*

* Department of Chemistry, ‡ Department of Electrical Engineering,

No matter what exact product, the process needs to .

...deliver required product performance targets,...

...provide sufficient yield, and...

...be scalable.

February 28, 2017

Enabling Technology Developments

Molten Metal Reactor

Photo: Georgia Tech

Computational Fluid Dynamics

Plasma Arc Reactor

Image:PRETechnologies

Molecular Modeling

Photo:Pyrogenesis

Workshop intended for early Summer '17...

- ...will bringing together experts in:
 - catalysis
 - process engineering
 - material science, and
 - product/application development
- ...to better define the most promising research and development opportunities to advance methane cracking towards a commercially relevant technology.
- If you are interested, in this topic area, please see me here at the summit or send me an email: marc.vonkeitz@hq.doe.gov

Thank you!

February 28, 2017

16