Thermally Activated Technologies

Craig Walker, Sr. Director, CCS Program Office United Technologies Research Center

December 14-15, 2016

Thermally Activated Technologies - Uses

Customer value of heat recovery – Delivering a new function or displacing a higher cost alternative

Increasing value generally requires increasing heat quality and system complexity/cost

Low Value	Medium Value	High V
Driveway heating	Radiant floor space heating	Space
Pool heating	Baseboard heating	Heat to
	Spa heating	Pyroele
	Domestic hot water	-
	Latent heat removal	

Key to economics is delivering high customer value with very low system complexity!

Value e Cooling o electricity (ORC, lectrics)

Thermally Activated Technologies - Challenges

Lifecycle system complexity

Source of complexity OEM design

Maintenance

Interfaces (grid, other systems)

Installation: Factory Cost to installed cost ratio can be 3:1 or higher

Matching sources and uses

Potential mitigation Minimize moving parts Choose simplicity over elegance Design for XX from day one

Design for low maintenance (oil free, ten year components) Build in diagnostics and prognostics

Hermetically sealed, minimize interfaces, factory integration of components

Must be as close to plug and play as possible eliminate application engineering

Add active controls or decouple using storage

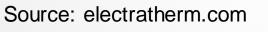
Thermally Activated Technologies – What Makes a Good Joule?

	Current Heat Sources	Current Heat Use	GEN Resident
Clean	Depends		
Continuous			
Close	Depends	Depends	
Consistent (Time, Quality, Quantity)			
Compact/Scalable	\overleftrightarrow	Heating X Cooling X	Prime mov Gensets
Customer (Same)	Often	Often	
Cost	Challenging depending on scale and duty cycle	Challenging for cooling	Prime mov Gensets
COP/Efficiency	Generally Too low for good value w/o heat recovery	Heating Cooling	Prime mov Gensets

Thermally Activated Technologies – Scalability of ORC Technology

Source: turboden.com

Source: calnetix.com


50kW to 5MW+...

- Commercial solutions available
- Low to High grade heat sources \bullet
- ✓ Solar thermal
- ✓ Biomass
- ✓ Geothermal
- ✓ Engine Waste Heat
- ✓ Industrial Waste Heat ✓ CHP

Source: siemens.com

- No commercial solutions
- **Design & cost challenges** ullet
- Installation and maintenance \bullet
- •
- Low cycle thermal efficiency
- Customer acceptance
- Lack of prime movers lacksquare

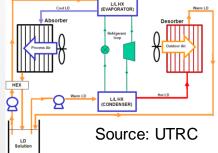
Air versus water cooling drives

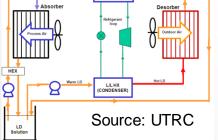
Thermally Activated Technologies – Scalability Cooling Technologies

Current Landscape...

- Commercial solutions available
- Low to High grade heat sources ullet
- Economic challenges

Absorption


Source: energy.gov


Source: stsl.gatech.edu

Source: pall.com

<Residential Scale...

- No commercial solutions
- Design & cost challenges
- Installation and maintenance •
- Cooling)
- Supply/Demand mismatch
- Low overall energy cost ullet
- **Customer** Acceptance
- Lack of prime movers ullet

Low efficiency (air versus Water

Combined Heat and Power - Concepts

Can achieve remarkable results by treating the home as an integrated system

Waste Heat to Power

- Organic Rankine Cycle
- Supercritical CO2

Storage: Passive or active thermal or electrical

Waste Heat to Process Heat

- Space heating
- Water heating (driveways, Pools, DHW etc.)
- Cooking
- Drying

<complex-block>

Efficiency

Waste Heat to Cooling

- Absorption
- Adsorption
- Desiccant Dehumidification
- others

Efficiency of Base-load Power

2.5kW Natural Gas Generator

7