

Can Nature Help Solve This Problem?

Biomimetic Adhesives for Infrastructure Repair

Jon Wilker Purdue University

The Heroes of Our Story

barnacles

oysters

- Reduce turbulence
- Deter predators
- Reproductive efficiency

Reductionist Approach to New Materials

- Complex protein
- DOPA cross-linkable sidechains

poly(catechol-styrene) highest strength, dry & wet

zein protein (corn)

tannic acid (trees, coffee)

- zein-tannic acid
- bio-based, cheap

Catechol groups

Simple polymer backbone

poly(catechol-MMA-OEG)tunable flexibility, modulus

• tunable degredation

Dry Adhesive Strengths on Etched Aluminum

- poly(catechol-styrene)
- optimized M_w , catechol %, formulation
- polymer + solvent + filler

Gorilla Glue, urethane	3.3 (±0.8) MPa
Elmer' s white PVA glue:	3.8 (± 0.6) MPa
Super Glue, cyanoacrylate	5.0 (± 0.7) MPa
Epoxy glue, Loctite Quick Set	18 (± 2) MPa
Our biomimetic copolymers:	

Dry Adhesion

	etched aluminum	sanded steel	red oak	Teflon
Elmer's Glue (polyvinyl acetate)	3.8 ± 0.6	7 ± 1	11 ± 2	0.48 ± 0.07
Loctite Super Glue (cyanoacrylate)	5.0 ± 0.7	7 ± 1	9 ± 2	0.7 ± 0.2
Loctite Quick Set (epoxy)	18 ± 2	18 ± 2	15 ± 2	1.0 ± 0.1
biomimetic polymer	11.0 ± 0.5	10 ± 1	6.0 ± 0.5	0.23 ± 0.08

High performance versus commercial products

Underwater Adhesion Testing

Underwater	Perform	nance	Versus	is Commercials			
	polished aluminum	etched aluminum	sanded steel	red oak	PVC	Teflon	
				0 2 2 2 2 2			
Gorilla Glue (urethane)	0.7 ± 0.1	0.4 ± 0.2	0.5 ± 0.1	0	3.0 ± 0.6	0	
Mr. Sticky' s (epoxy)	1.0 ± 0.3	0.2 ± 0.1	0.4 ± 0.1	0	3.0 ± 0.6	0.10 ± 0.08	
North Sea Resin (acrylic)	0.3 ± 0.1	0	0.2 ± 0.1	0	0	0	
Marine Loctite (epoxy)	0.6 ± 0.3	0	0.2 ± 0.1	0	2.0 ± 0.5	0	
3M Marine (urethane)	0.2 ± 0.1	0.4 ± 0.2	0.5 ± 0.1	0	3.0 ± 0.6	0	
piomimetic polymer	3.0 ± 0.4 stronger	0.2 ± 0.1 <i>same</i>	0.10 ± 0.02 <i>weaker</i>	0.2 ± 0.1 stronger	0.4 ± 0.1 weaker	0.3 ± 0.1 stronger	

• High performance versus commercial products

Formulation for Practical Use

Underwater lap shear on polished aluminum

chloroform (beads up, rolls away)

1.3 ± 0.5 MPa

dichloroethane/dimethylformamide (wets well, persists on slanted substrates)

$0.29 \pm 0.05 \text{ MPa}$

- DCE/DMF has lower adhesion than CHCl₃, but is easier to work with
- This lower adhesion is still higher than most commercial glues
- Formulation work is straigthforward, but needs to be done.

Bonding Without Surface Cleaning?

- Bonding to degrading surfaces may lose the adhesive
- Perhaps we can reach the underlying surface

Potential alternative:

- Current epoxies may be too viscous
- Tailor properties as needed

- We have flexibility in formulation
- Can tune viscosity, etc. as needed
- Change polymer concentration, add fillers, etc.

Cross-Linking, Encapsulation, Formulation

- Two part adhesive system can make a gel, rapid curing
- Oxidants can cross-link polymer and cure the adhesive
- (Bu₄N)(IO₄), periodate, is a good example, Fe³⁺ salts, too

Park and Yeo, Encyl. Pharm. Tech., 2007, p. 2315

- Encapsulate oxidant in particle, break open to cure
- Not tried yet, but could work
- How to break open? How to fill? How to formulate?

Conclusions and Future Outlook

- Biomimetics yields high performance adhesives
- Hydrophobicity and wet bonding may help with pipelines
- Many variables available to change formulations

- Define ideal adhesive properties for pipeline repair
- Develop new formulations accordingly
- Test and reformulate

Acknowledgments

Neil Armstrong Heather Siebert Natalie Hamada Mille Putnam ARMSTRO Bradley McGill **Taylor Jones** Andrés Tibabuzo Lee Hamilton

Uma Haryal & Victoria Hedrick, Purdue Janie Bryan & Julie Liu, Purdue Tara Essock-Burns & Dan Rittschof, Duke Keith Fritzching & Klaus Schmidt-Rohr, Brandeis Christa Crain & Robyn McCain, Purdue Neeraj Gohad & Andy Mount, Clemson Eric Holm, NSWC Carderock Chia Ping Huang, Chris Gilpin & Debby Sherman, Purdue Paul Kenny, Baruch Marine Lab, S. Carolina

Office of Naval Research

National Science Foundation

Gert Breur & Craig Georgen, Purdue Chuan Leng, Yuwei Liu & Zhan Chen, U of Michigan Emily Ralston & Geoff Swain, FIT Rebecca Rist & Rebecca Metzler, Colgate U Axel Rosenhahn, Bochum U, Germany Karen Sider, VIMS Erik Soderblum & Arthur Moseley, Duke John Supan, LSU