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Opportunities & Challenges

Synthesis & Performance

Fusion Fuel Cycle
• Membranes critical throughout
• Desired: High flux, infinite selectivity
• Materials: Thermal &   chemical stability

Metal Foil Pumps
• Enables direct internal recycling (DIR) reducing T inventory
• Energetic hydrogen superpermeable
• Metal foil pumps (MFP) with asymmetric coatings
• Hydrogen diodes: One way flow

Tritium Extraction from Breeder Blankets
• Molten Metals, Salts (PbLi, FLiBe) 
• High temperature (400 – 800 ºC), corrosive

Exhaust Processing
• Removal of He, trace carbon, oxygen
• Improved efficiency over conventional CAPER process

Catalytic Membrane Reactors
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Reactor Construction & Model

• Reduced catalysts loadings (10X), operating temperature >200 ºC .
• Significantly enhance recovery of hydrogen
• Validated reactor model for design, scale-up 

Tritium Permeable Metal Membranes
• Solution-diffusion mechanism
• High permeability, infinitely selective
• High T compatibility  (300 – 1000 ºC)
• Pd alloys and BCC metals

Palladium and Related Alloys
• Electroless plating: Large area, flexible geometries
• Ceramic or ceramic-coated SS supports
• Relatively expensive: 3 – 10 microns

Composite BCC Metal Membranes
• Orders of magnitude cheaper
• Carbide catalysts (~20 nm) on metal foils
• Higher permeability than Pd!
• High temperature stable ( T> 750 ºC)
• Used for isotope enrichment

Composite Metal Membranes
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• KALPUREX
• Metal Foil Pump
• Superpermeation of ionized Q
• Requires ionizer and heating element

• Separation of Q2 from Q2O, CQ4, He, CO, CO2, and 
PEG

• Use of PdAg permeators, catalyst bed and PdAg
membrane reactor

DCLL
• Permeator Agaisnt

Vacuum
• T > 500°C
• Coating technology 

required
HCLL
• Pd coated V tubes at 

<400°C

• T > 500°C
• Vanadium-based
• Coating 

technology 
required

Membrane Processes
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Systems Examined
• Steam Methane Reforming (SMR):       

CH4 + 2H2O → 4H2 + CO2
• Water Gas Shift (WGS):                

CO + H2O → H2 + CO2
• Ammonia Reforming:               

2NH3 → 3H2 + N2
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