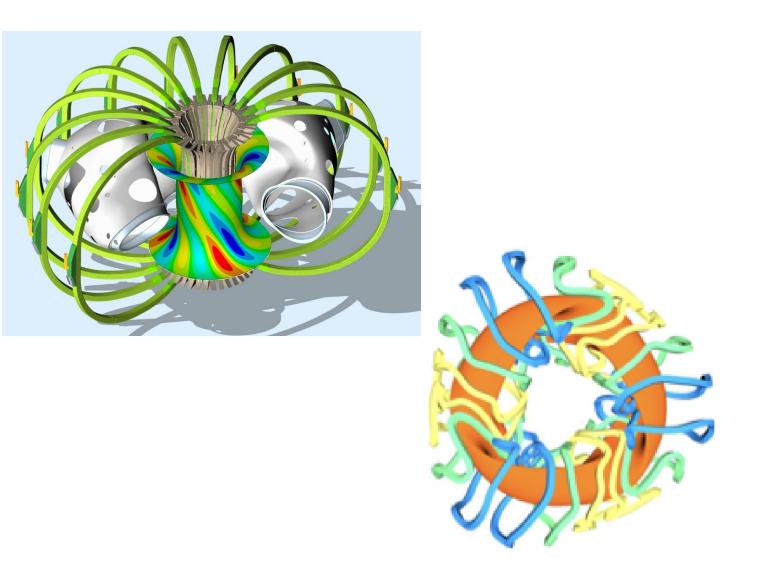
The Permanent Magnet Stellarator **Simpler Stellarators for Fusion Energy** M.C. Zarnstorff, S. Cowley, D.A. Gates, C. Zhu, A. Bhattacharjee


PPPL and Princeton University

Largest Technical Gap for Stellarators: Coil Simplification

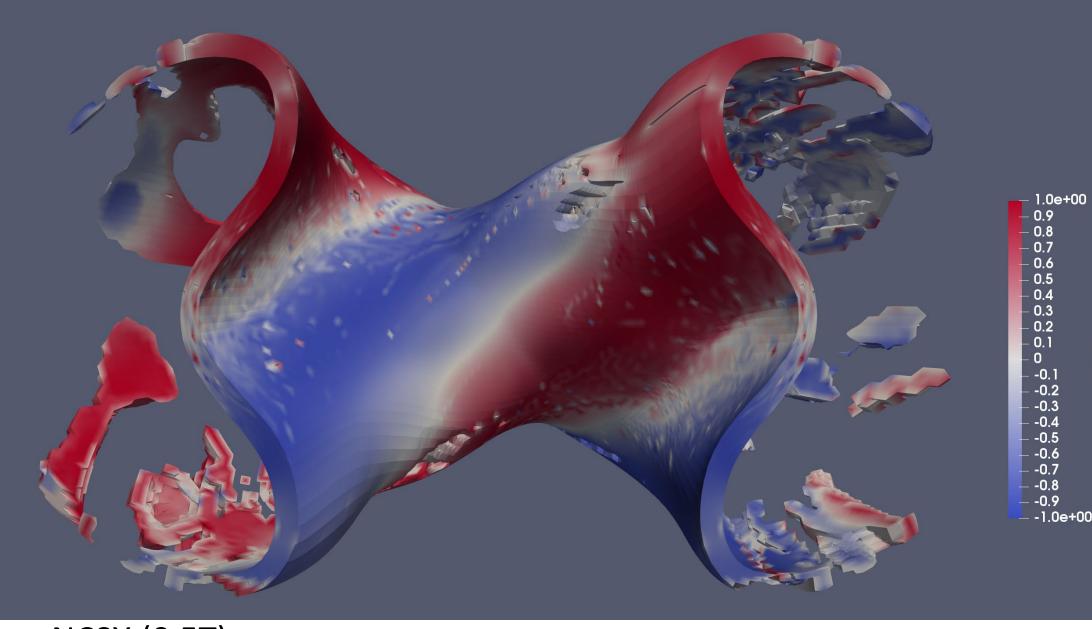
- Identified as gap and main barrier in many reports (ARIES, FESAC, ReNeW)
- 3D magnetic fields require 3D coils more complicated than tokamaks
- Greatly complicates access and maintenance of core components (e.g. blankets)

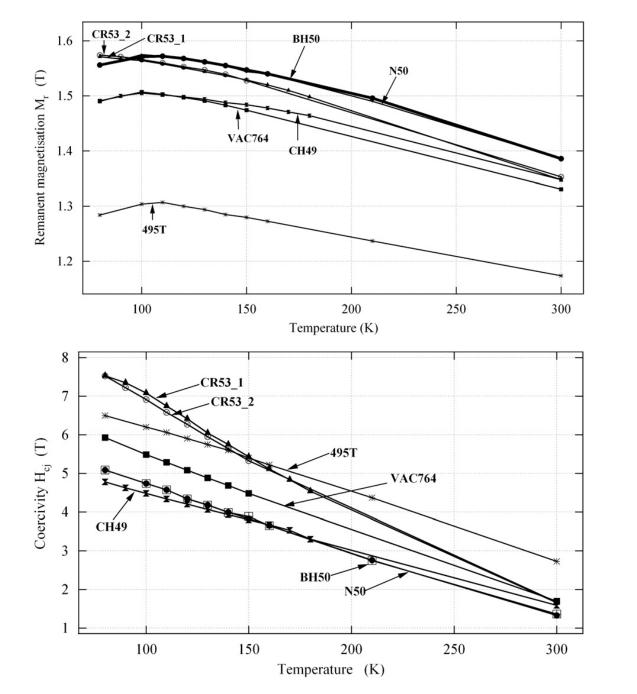
Approach: Extreme Simplification using Planar Coils & Permanent Magnets

- Resolve main engineering risk and barrier for stellarators (ARIES, FESAC, ReNeW)
- Crucial for maintenance and availability; cost reduction
- Optimized quasi-symmetry for good confinement
- Vary configuration by redistributing magnets
- Made possible by modern, neodymium/RE magnets

Stellarators simplify fusion systems Reduce challenges

- Magnetic field from magnets \rightarrow no current driv
 - v. low recirculating power, high Q

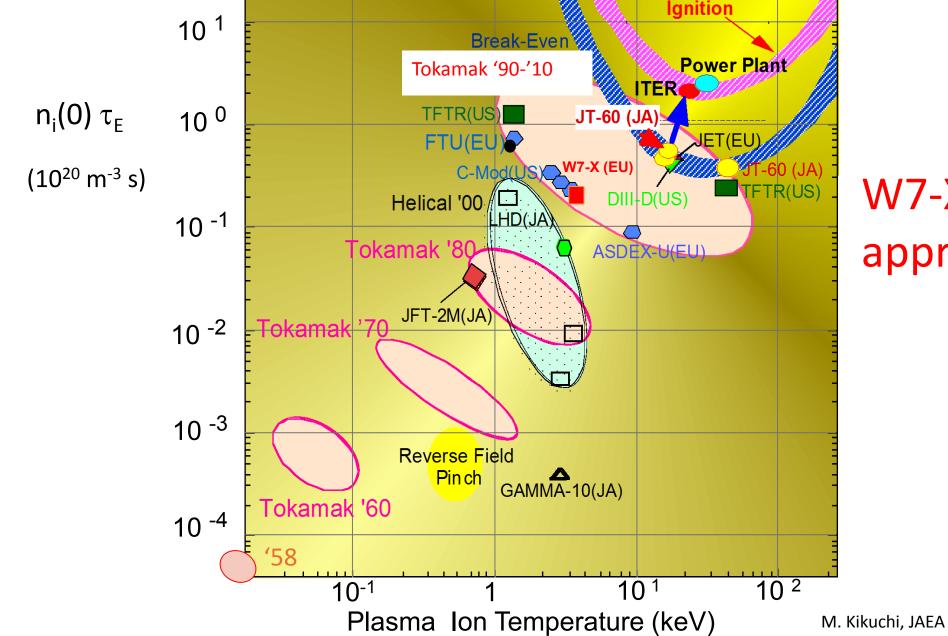

steady state easy


- Disruption free \rightarrow no runaways & EM loads
- Soft density and pressure limits
- Density limit much higher than tokamaks, easing divertor design
- Long divertor connection lengths, easing controlled detachment
- Sustained high β in LHD (4.8%) and W7-AS (3.2%).

- Assess key properties:
- Confinement
- Explore β limit
- Low-Z vs. high-Z metal first wall, use of liquid-metals, build on LTX- β and LM initiative

Rare Earth Magnets Almost Ideal

- High remnant magnetic field and coercivity • Properties improve as temperature drops - 293K: B_r=1.49T, coercivity ~2.8 T - 77K: B_r= 1.59T, coercivity > 7.7 T
- $\mu_r = 1.01 1.05$. Highly anisotropic.
- Commercially available in quantity
- Fe-N may (someday) offer $B_r > 2.5T$
- Diamagnets (bulk superconductors) can give similar shaping control to > 17T (but require cryogenic cooling)


Initial perm. magnet solutions

• Ability to design for good confinement: W7X, HSX, LHD.

W7-X has Rapidly Exceeded Expectations

- $T_e(0) \sim 10 \text{ keV}$; τ_F up to ~0.24 sec
- Initial validation of optimization strategies
- Turbulence dominated confinement,
- No impurity accumulation
- Well functioning 3D divertor, controlled detachment

Building on results from W7-AS, HSX, LHD **Conclusion: Stellarator optimization works!**

Stellarato

2000

[H. Zohm et al., 2017]

Fusion Power [MW]

30

Tokamak

800

600

400

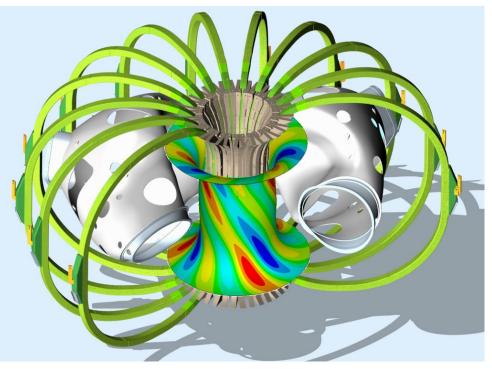
200

W7-X nT_i τ_E early op. approaching tokamaks

NCSX (0.5T): 20cm thick 2.9 m³ Perp. only Perp. & tangential 10cm thick 1.9 m³

Halbach array

Almost all magnets on inner region in *major radius.*


Perm. magnet distribution not unique to make specified plasma shape.

Can exclude port regions.

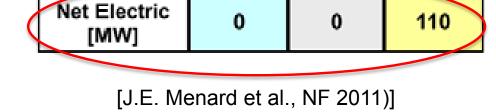
Three different numerical approaches developed -- C. Zhu (PPPL) -- M. Landreman (U.Md)

Initiative Plan

- Establish initial experiment at minimum cost by re-using components
- Some parts from NCSX (TF coils, vacuum vessel), but room-temperature
- NB (1.5MW, 20kV), some diagnostics, wall-coatings (Li) from LTX-β
- Improved configuration designs- beyond NCSX (e.g. fast ion conf.).
- Initial operation at B=0.5 T (set by exiting TF coils)
- Cost: \$10 20 M.
- World's first simple optimized stellarator!

Stellartors Project to Simpler Pilot Plants

- Eliminate CD systems
 - Increase energy efficiency, Q
- Retire η_{CD} risk, disruption risks
- Simplify and increase TBR
- Could Produce net power at moderate scale and plasma power flux. Aim for
 - 50 100 MWe
 - JET/W7X scale


S				
		AT Pilot	ST Pilot	CS Pilot
	$A = R_0 / a$	4.0	1.7	4.5
	R₀ [m]	4.0	2.2	4.75
	Β _τ [T]	6.0	2.4	5.6
	I _P [MA]	7.7	20	2.1
	q ₉₅	3.8	7.3	1.5
0	f _{BS} or iota from BS	0.69	0.90	0.23
	n _e / n _{Greenwald}	1	0.7	-
	H ₉₈ or H _{ISS04}	1.22	1.35	1.75
	βτ [%]	4.8	39	6.9
	β _N	3.7	6.1	-
	P _{fus} [MW]	674	1016	529
	P _{aux} [MW]	79	50	12
	Q _{DT}	8.5	20.3	44
	Q _{eng}	1.0	1.0	2.5

enhancement achieved.

• Need integrated high- β , high confinement &

Re-configure magnets to test and improve shaping configuration

• Upgrade to B=1 T after ~2 years of research, to reduce collisionality

• Consider second upgrade to B=2 T after ~2 more years.

Supported by DOE Contract DE-AC02-09CH11466

and the Simons Foundation Hidden Symmetries

