ARPA-E Project Selections

July 12, 2010

These projects have been selected for negotiation of awards; final award amounts may vary.

Lead Research Organization (Partner Organizations)	Amount	Lead Organization Location (City, State)	Technology Focus – Application: Project Title Project Description				
1) Agile Delivery of Elect) Agile Delivery of Electrical Power Technology (ADEPT)						
Arkansas Power Electronics International, Inc.	\$3,914,554	Fayetteville, AR	Circuit Topology/Switches - Automobiles: Low-Cost, Highly- Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid				
(University of Arkansas, ORNL, Toyota, Cree) Case Western Reserve University	\$2,254,017	Cleveland, OH	Charging modules for plug-in hybrid electric vehicles (PHEVs) require power electronics that are small, low cost, and efficient and reliable at high temperatures so that additional cooling becomes unnecessary. As electric vehicles become more prevalent, higher power levels will become necessary to enable rapid battery charging. This project will develop and demonstrate a transformational, highly-efficient, ultra- compact silicon carbide PHEV charger. <i>Capacitors - Automobiles: High-Power Titanate Capacitor for</i> <i>Power Electronics</i>				
(G&S Titanium, Evans Capacitor Company)			This project will develop novel capacitors for power electronics in the hybrid electric vehicle and consumer electronics markets. The capacitors are designed with metallic glass that allows spontaneous self-repair. This self-repair allows the devices to be driven to higher voltages and thereby achieve higher energy density. The market for capacitors in power applications is \$1.6 billion per year.				
Cree, Inc.	\$3,736,291	Durham, NC	Switches - Transmission: 15 kV SiC IGBT Power Modules for Grid Scale Power Conversion				
(Powerex, North Carolina State, ABB, Naval Research Lab)			The purpose of this project is to demonstrate advanced transistor based electrical substations that can help make the electrical grid more flexible and controllable. These novel substations will be enabled by record high voltage (15-20kV) transistors using Silicon Carbide (SiC). These advanced transistors enable the replacement of today's heavy (8000lb) transformers used for electricity distribution, with much smaller, suit-case size (100lbs) electronic transformers.				
CUNY Energy Institute	\$1,568,330	New York, NY	Capacitors - Lighting: Metacapacitors				
(Columbia University, UC Berkeley)			This project will develop a novel electrically insulating material for a new breed of capacitors that increases the capacitor's storage capability and allows for low-cost, efficient grid interfaces for applications from solid-state lighting to solar photovoltaics. The thin film capacitor can be printed in rolls similar to newspaper printing. Transistors and are sealed into				

Lead Research Organization (Partner Organizations)	Amount	Lead Organization Location (City, State)	Technology Focus – Application: Project Title Project Description
			these capacitor films to form Metacapacitors. The resulting Metacapacitors are a flexible fabric for electrical power conversion.
GE Global Research (Dartmouth University)	\$949,545	Niskayuna, NY	Magnetics - Photovoltaics: Nanostructured Scalable Thick-Film Magnetics
			This project will develop a novel magnetic component that supports compact power interfaces between solar photovoltaics and the electrical grid. This new component uses nanostructured magnetic materials scaled to millimeter dimensions.
GeneSiC Semiconductor	\$2,450,000	Dulles, VA	Switches - Transmission: Monolithic Silicon Carbide Anode Switched Thyristor for Medium Voltage Power Conversion
(Dow Corning, University of Illinois- Chicago, Bonneville Power Administration, Sandia National Labs)			This project will develop novel semiconductor technology that will allow efficient processing of Megawatts of electrical power with digital precision. Specifically, high-voltage switches in silicon carbide will be developed and will enable precise control of the electricity infrastructure.
Georgia Tech Research Corporation	\$999,017	Atlanta, GA	Magnetics - Consumer Electronics: Highly Laminated, High Saturation Flux Density Magnetic Cores for On-Chip Inductors in Power Converter Applications
(National Semiconductor)			The goal of this project is to greatly reduce the size and cost, and increase the efficiency of, laptop power supplies and other chargers used to power consumer electronics. It will do so through the development of new magnetic materials that support high-currents despite their small size. New manufacturing technologies are employed to create microscale laminates, forming them into inductors and transformers, and integrating them with specialized electronic components to make very small-scale power converters.
Georgia Tech Research Corporation	\$981,619	Atlanta, GA	<i>Circuit Topology/Switches - Transmission: Dynamic Control of Grid Assets Using Direct AC Converter Cells</i>
			Technology developed in this project will enable dramatic cost reductions in smart grid implementation and allow increased penetration of renewable energy resources by reducing transmission and distribution upgrade costs by up to 80%. The project will involve several key developments: a new converter layout that achieves an AC/AC function using minimal number of switches, and the elimination of large capacitors in the system.

Lead Research Organization (Partner Organizations)	Amount	Lead Organization Location	Technology Focus – Application: Project Title
		(City, State)	Project Description
HRL Laboratories, LLC	\$5,058,803	Malibu, CA	Switches – Automobiles: Gallium-Nitride Switch Technology for Bi-directional Battery-to-Grid Charger Applications
(GM, Va Polytech, ORNL, Teledyne) Massachusetts	\$4,414,009	Cambridge,	The purpose of this project is to develop efficient, compact, and low-cost battery chargers for electric cars. This compact battery charger will support two-way power flow enabling the electrical grid to access the vehicle's battery. More specifically, it will utilize an advanced semiconductor material called Gallium Nitride (GaN) grown on inexpensive silicon to form high voltage switches. <i>Switches/Magnetics - Lighting: Advanced Technologies for</i>
Institute of Technology	\$4,414,005	MA	Integrated Power Electronics
(Dartmouth, Georgia Institute of Tech, U Penn, OnChip Power)			This project radically improves the size, integration, and performance of power electronics for high-efficiency solid- state lighting (SSL), with a focus on circuits for interfacing with grid-scale voltages (>100 V) at power levels of 10 – 100W. Specifically, it will develop Gallium Nitride on Silicon (GaN-on- Si) high-voltage transistors, nano-structured magnetic components, and advanced circuit designs.
Teledyne Scientific &	\$3,439,494	Thousand	Magnetics/Switches - Lighting: Integrated Power Chip
Imaging		Oaks, CA	Converter for Solid State Lighting
(Flextronics, RPI, Teledyne Lighting & Display Products, Anthony International)			This project will develop a single integrated circuit that will convert the 120V AC from an electrical outlet to direct current required for LED lighting. The power supply uses high- performance, integrated capacitors and transformers on the same chip as high-voltage transistors. Making a cheaper, easily mass-produced LED driver is expected to accelerate the adoption of energy-efficient solid-state lighting.
Transphorm Inc	\$2,950,000	Goleta, CA	Switches - Motors: High Performance GaN HEMT Modules for Agile Power Electronics
(Kroko, Evans Analytical, UCSB Nanotech, Consultant Magnetics, Stacia Keller)			This project seeks to foster the adoption of energy-efficient, variable speed motors that are employed in industrial uses from industrial automation to air-conditioning. These compact motor drives will utilize the first hybrid multichip power operating at high frequency (1 megahertz), using efficient high-voltage gallium nitride grown on silicon.
Virginia Tech	\$900,000	Blacksburg, VA	Magnetics/Capacitors - Consumer Electronics: Isolated Converter with Integrated Passives and Low Material Stress
(U of Florida, UT-Dallas)			This project will develop a single-chip power supply mobile applications, such as netbooks. The chip converter will include the integration of a transformer, novel capacitors, and transistors, with nano-magnetic material dispensed with high precision by low-cost inkjet printing. The resulting highly efficient (greater than 90%) converters with high power density will reduce the tera-watt-hours of energy consumed by notebooks and netbooks annually.

Lead Research Organization (Partner Organizations)	Amount	Lead Organization Location (City, State)	<i>Technology Focus – Application: Project Title</i> Project Description
Virginia Tech (University of	\$983,000	Blacksburg, VA	Magnetics/Switches - Consumer Electronics: Power Supplies on a Chip (PSOC)
Delaware, International Rectifier)			This project is focused on a high-voltage, high-current integrated circuit to power future generations of microprocessors, graphic cards and memory devices. This chip-scale power supply uses new high-voltage transistors using gallium nitride on silicon integrated with new magnetic components.

	Fff: -! The		· · ··································
i Killiaina Fherav	FTTICIPNCV I NrOI	ian innovative i nerm	ΙΛΠΡΥΙΓΡς ΙΚΕΕΙ-ΙΙΙ
 Dunung Energy		ıgh Innovative Therm	

	r	ſ	
ADMA (Pacific Northwest National Laboratory,	\$3,269,965	Hudson, OH	Dehumidification: High-Efficiency, on-Line Membrane Air Dehumidifier Enabling Sensible Cooling for Warm and Humid Climates
Texas Engineering Experiment Station- Texas A&M University)			In warm and humid climates, the efficiency of air conditioning decreases significantly in removing the moisture out of the air. This project proposes to dehumidify moist air using a metal foil-like, paper-thin membrane - comprised of a thin layer of
			ceramic material deposited on a porous metal sheet - that selectively sieve out water molecules at very high flux while blocking air molecules. This would enable higher efficiencies and significant cost savings in cooling technologies.
Architectural Applications	\$458,265	Portland, OR	Dehumidification: Innovative Building-Integrated Ventilation Enthalpy Recovery
(Membrane Technology and Research, Inc., Lawrence Berkeley National Laboratory)			This project will develop a new technology that will recycle building exhausted air to partially cool and dehumidify incoming fresh air. This design promises a performance increase of 25-40% compared to conventional air conditioning systems.
Astronautics Corporation of America	\$2,889,839	Milwaukee, WI	Solid State Cooling: An Efficient, Green Compact Cooling System Using Magnetic Refrigeration.
Battelle Memorial	\$401,654	Columbus,	Traditional refrigeration systems use liquid based refrigerants which have global warming potential (GWP) more than 1,000 times that of CO2. This project proposes to use a solid state cooling technology with GWP of zero based on magnetic refrigeration. The team will construct and test a magnetic refrigeration cooling system that will achieve significant energy efficiency and reduce system operating costs compared to conventional vapor compression systems. Vapor Absorption/Adsorption: Cascade Reverse Osmosis and
Institute, Corporate Operations	\$ 101,00 T	OH	the Absorption Osmosis Cycle
(Dynamic Solutions, LLC)			This project will use a new absorption osmosis cycle that uses water as the refrigerant and a salt as the heat absorber. Using reverse osmosis, the approach separates water from a salt solution using an efficient liquid pumping and membrane

Lead Research Organization (Partner Organizations)	Amount	Lead Organization Location	Technology Focus – Application: Project Title
		(City, State)	Project Description
			separation process. This is radically different from traditional
			cooling technologies that use mechanical compressors, and has the potential to increase the energy efficiency of air
			conditioning by more than 50%.
Counseling & Consulting Associates	\$400,000	San Diego, CA	Gas Cycles: Centrifugal Air Cycle Air Conditioning System
			The centrifugal air conditioning system uses air as a refrigerant
(Flometrics, On Target			and novel compact system that boosts performance. This
Design)			technology will use fluids with zero Global Warming Potential
Coordin Tools Doors ash	¢2,200,042	Atlanta CA	and improve energy efficiency in AC systems.
Georgia Tech Research	\$2,399,842	Atlanta, GA	Vapor Absorption/Adsorption: Modular Thermal Hub for
Corporation			Building Cooling, Heating and Water Heating
(Stone Mountain			This project will develop a hub for cooling and heating systems
Technologies, Inc., ARS			in buildings using microscale passages. It uses fluids with zero
Solutions, LLC)			Global Warming Potential (GWP) and can achieve from
			hundreds to tens of thousands of Watts in cooling capacity
	40.000.010		and a 51% primary energy use reduction.
Infinia Corporation	\$3,000,617	Kennewick, WA	Gas Cycles: Stirling Air Conditioner (StAC) for Compact Cooling
(Heat Transfer			This project will develop and demonstrate a prototype Stirling
Technologies, Enertron,			Air Conditioner that combines a Stirling cycle with innovative
Barry Penswick)			heat transfer coupling to produce improvements in compact
			cooling. It will use no greenhouse gases, can achieve high
			efficiency and can be cost effectively mass-produced.
Material Methods LLC	\$399,800	Irvine, CA	Gas Cycles: Phononic Heat Pump
VIT LLC			This project will demonstrate a refrigerator that pumps heat
			using sound waves. Low cost and high reliability result from
			high thermal efficiency and mechanical simplicity with no
			linkages, no exotic materials, and simple construction. The
			working fluid is environmentally safe and friendly.
Pacific Northwest	\$2,541,952	Richland,	Vapor Absorption/Adsorption: High Efficiency Adsorption
National Laboratory		WA	Chilling Using Novel Metal Organic Heat Carriers
(Power Partners, Inc.,			This project entails the design, assembly and testing of an
Arkema)			adsorption chiller that takes advantage of tunable binding
			energy of metal organic heat carrier (MOHC) sorbents and
			select refrigerants to achieve high efficiency in commercial
			heating, ventilation, air conditioning and refrigeration systems.
Sheetak Inc.	\$563,303	Austin, TX	Solid State Cooling: Non-Equilibrium Asymmetric Thermoelectric (NEAT)
			This project will develop a high efficiency solid-state
			refrigeration compressor using a new thermoelectric material
			system known as Non-Equilibrium Asymmetric Thermoelectric
			(NEAT). It will use less energy than conventional compressors
			without using fluids with Global Warming Potential.

Lead Research Organization (Partner Organizations)	Amount	Lead Organization Location (City, State)	<i>Technology Focus – Application: Project Title</i> Project Description
The Pennsylvania State University	\$2,988,720	State College, PA	Gas Cycles: One-ton (3.5 kW thermal) Thermoacoustic Air Conditioner
(ThermoAcoustics Corporation, Heatcraft Worldwide Refrigeration)			This project will scale up an existing thermoacoustic chiller system to produce an air conditioning unit that recycles sound for cooling. It will use no exotic materials that increase cost or reciprocating seals that limit service life.
The Regents of the University of California, Los Angeles	\$520,547	Los Angeles, CA	Solid State Cooling: Compact MEMS Electrocaloric Cooling Module
			This project will develop a novel solid-state cooling technology to translate a recent scientific discovery of the enhanced electrocaloric effort into commercially viable compact cooling systems that have reduced energy consumption and avoid the use of refrigerants to cool building spaces.
United Technologies Research Center	\$2,855,795	East Hartford, CT	Mechanical Vapor Compression: Water-Based HVAC System To use water as a refrigerant this project will focus on developing a novel supersonic compressor to achieve a high compression ratio in a single stage. This project will develop a high efficiency air conditioning system to enable a lower cost Vapor Compression (VC) system.
United Technologies Research Center	\$3,098,765	East Hartford, CT	Vapor Absorption/Adsorption: Nano-Engineered Porous Hollow Fiber Membrane-Based Conditioning System
(Pall Corporation, Polymer Science Associates, New Jersey Institute of Technology)			With novel integration of a liquid desiccant and a vapor compression cycle this project will develop and demonstrate an air conditioning system optimized for use in warm and humid climates with an efficiency (as measured by primary COP) that is at least 50% greater than conventional air conditioning units.
University of Florida (b2u Solar, Inc.,	\$1,000,000	Gainesville, FL	Vapor Absorption/Adsorption: A New Generation Solar and Waste Heat Power Absorption Chiller
Wolverine Tube, Inc.)			This project will develop a next generation solar and waste heat powered absorption chiller and refrigeration system that is an order of magnitude smaller than the existing systems with a significantly reduced cost.
University of Maryland	\$500,001	College Park, MD	Solid State Cooling: Thermoelastic Cooling
(GE Global Research, Pacific Northwest National Laboratory)			This project will demonstrate the commercial viability of solid state thermoelastic shape memory alloy for space cooling using a 0.01-ton prototype intended to replace conventional vapor compression cooling technology. It will not use fluids with high Global Warming Potential and will have a smaller operational footprint than conventional vapor compression technology.

Lead Research Organization (Partner Organizations)	Amount	Lead Organization Location (City, State)	<i>Technology Focus – Application: Project Title</i> Project Description
University of Notre Dame	\$2,817,926	Notre Dame, IN	Mechanical Vapor Compression: Compact, Efficient Air Conditioning with Ionic Liquid Based Refrigerants
(Dometic LLC)			Global warming potential (GWP) of current refrigerants is more than 1000 times the GWP of CO2. This makes CO2 very attractive as refrigerants. However, CO2 based refrigeration systems require approximately 100 times higher pressure than atmospheric pressure for operation. The University of Notre Dame proposes to demonstrate an operating vapor compression HVAC cycle based on CO2- ionic liquids co-fluid system facilitating lower pressure operation, with a much higher efficiency than is currently possible with existing systems.
3) Grid-Scale Rampable I	ntermittent Dis	patchable Store	age (GRIDS)
ABB Inc (SuperPower Inc., Brookhaven National	\$4,200,000	Cary, NC	Superconducting Magnetic Energy Storage (SMES): Superconducting Magnet Energy Storage System with Direct Power Electronics Interface
Lab)			ABB will lead a team developing an advanced superconducting magnetic energy storage (SMES) device. SMES is a novel technology that stores electricity from the grid in the magnetic field of a coiled wire with near-zero loss of energy. The proposed device will have instantaneous response and nearly infinite cycle life. If the high-risk breakthrough technologies in this project are successfully developed, the result will advance SMES from a high-cost solution for delivering short bursts of energy to a technology that is cost-competitive for delivering megawatt hours of stored electricity.
Beacon Power Corporation	\$2,250,000	Tyngsboro, MA	Flywheel: Development of a 100 kWh/100 kW Flywheel Energy Storage Module
(Imlach Consulting Engineering, IONICORP)			Beacon Power will lead a team in developing a next generation flywheel energy-storage technology. In a flywheel system, electricity is stored as kinetic energy in a spinning wheel. The proposed flywheel could store four times more energy than current flywheels at 1/8 th the cost. It employs a radically new "flying ring" design that is capable of accepting and delivering energy over 40,000 times during its 20-year lifetime. The proposed technology is ideal for simultaneously addressing both the renewable ramping challenge and other grid-storage applications.
Boeing	\$2,264,136	Huntington Beach, CA	Flywheel: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration
			In this project, Boeing will develop a high-risk materials technology for low-cost, high energy-density flywheel energy- storage. In a flywheel, electricity is stored as kinetic energy in a spinning wheel. While flywheels are currently used for short-

Lead Research Organization (Partner Organizations)	Amount	Lead Organization Location (City, State)	<i>Technology Focus – Application: Project Title</i> Project Description
			duration energy storage, this project will make possible a dramatic increase the energy density of the flywheel for longer-duration applications including renewable energy ramping. To increase energy density, Boeing will develop a new fiber material that allows the flywheel to spin at higher speeds without breaking. The resulting high energy density material will be enable subsequent scaling to utility-size and amenable to factory production at low cost.
CUNY Energy Institute (Rechargeable Battery Corporation)	\$3,000,000	New York, NY	Battery: Low-cost Grid-Scale Electrical Storage using a Flow- Assisted Rechargeable Zinc-Manganese Oxide Battery In this project, the CUNY Energy Institute, in partnership with Rechargeable Battery Corporation (RBC) and the Ultralife Corporation, will develop a novel battery that radically transforms the chemistry and low-cost materials found in disposable consumer-grade alkaline batteries into a long- lasting, fully-rechargeable energy storage system. While CUNY has already demonstrated some of the basic scientific principles, work in this high-risk project will achieve a rechargeable battery system that lasts for over ten years, costs under \$100/kWh, demonstrating potential for use on the
Fluidic Energy, Inc.	\$3,000,000	Scottsdale, AZ	electricity grid. Battery: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost Fluidic Energy will develop an advanced multi-functional energy storage (AMES) battery prototype. This is a high-risk technology which, if successful, will enable a highly scalable energy storage system well suited for supporting intermittent renewable resources (solar, wind) on the electric grid. The novel battery chemistry will overcome traditional electricity storage challenges of limited re-chargeability, low power density, and poor efficiency. This low-cost battery technology will be based exclusively on domestically-available, earth abundant active materials. A partnership with Satcon and Chevron Energy Solutions will ensure this project translates rapidly to products supporting renewable generation on the grid.
General Atomics (UC San Diego)	\$1,986,308	San Diego, CA	Flow Battery: GRIDS Soluble Lead Flow Battery Technology General Atomics and the University of California San Diego will develop a novel flow battery technology, which pumps chemicals through the battery cell when electricity is needed. The proposed flow battery revolutionizes a century-old lead- acid battery technology to achieve low cost, high efficiency and reliability needed for use on the electric power grid. This high-risk technology development program will use novel materials that greatly increase power while resisting the corrosion that limits the cycle life of conventional lead acid

Lead Research Organization (Partner Organizations)	Amount	Lead Organization Location (City, State)	<i>Technology Focus – Application: Project Title</i> Project Description
			batteries. These innovations will result in a battery that can be scaled for grid-scale energy storage, but which costs less and performs far longer than today's technologies.
General Compression	\$750,000	Newton, MA	Compressed Air Energy Storage (CAES): Fuel-Free, Ubiquitous, Compressed Air Energy Storage and Power Conditioning
Lawrence Berkeley	\$1,592,730	Berkeley, CA	General Compression will lead a team investigating a novel compressed air energy storage process (GCAES [™]) that is highly efficient and requires no fossil fuel. In this project, a team of industry and academic researchers will show the potential for a near-isothermal CAES unit, which could result in an energy storage technology with high round-trip electrical efficiency and fast response times. Unlike conventional CAES installations, no fuel will be burned in the expansion stage of the process, dramatically reducing emissions and operating costs. Once successfully developed, the GCAES [™] can accelerate the integration of renewable electricity generation, particularly wind, into the grid. <i>Flow Battery: Hydrogen-Bromine Flow Batteries for Grid-Scale</i>
National Laboratory	ŞI,392,730	bei keiey, CA	Energy Storage
(DuPont, Bosch, 3M, and Proton Energy)			Lawrence Berkeley National Laboratory and its team of industrial partners (DuPont, Bosch, 3M, and Proton Energy) will develop a novel flow-battery system for grid applications. Flow batteries pump reactive chemicals through the battery cell when electricity is needed; this project's battery will use hydrogen and bromine as its active materials. While this type of flow battery has existed for decades, it has been plagued by high costs, short lifetimes, and safety concerns. In this project, the LBNL team will apply unique technical approaches to address these challenges, and will deliver a proof-of-concept cell that will demonstrate the potential of this chemistry in grid-scale energy storage applications.
Primus Power	\$2,000,000	Alameda, CA	Flow Battery: Low-Cost, High Performance 50 Year Electrodes
			Primus Power will develop new durable, inexpensive metal electrodes for flow batteries for energy storage on the electric grid. Electrodes are a key component of flow batteries, which pump reactive chemicals through the battery cell when electricity is needed. Flow batteries are potentially ideal for electric grid storage applications, but are often limited by the high cost and poor durability of the electrodes. In this project, Primus Power will leverage processes developed for other chemical industries to develop novel, low-cost metallic flow battery electrodes. If successful, the result will be a 5X decrease in costs while simultaneously doubling the power density of the energy storage system.

Lead Research Organization (Partner Organizations)	Amount	Lead Organization	Technology Focus – Application: Project Title
		Location (City, State)	Project Description
Proton Energy	\$2,148,719	Wallingford,	Fuel Cell: Transformative Renewable Energy Storage Devices
(Penn State University)	, , , -	СТ	Based on Neutral Water
			Proton Energy and Penn State University will develop an
			advanced energy storage device that incorporates a
			regenerative fuel cell. Like batteries, fuel cells use chemical
			reactions to produce electricity. Many fuel cells require expensive precious metals such as platinum to operate. In this
			novel design, a unique component will be developed that
			allows the fuel cell to operate without significant use of
			precious metals. This innovation will dramatically reduce cost,
			and enable the economical use of this fuel cell system for
Lucitoral Talahara la sina	¢2,000,000	F aat	electricity storage on the grid.
United Technologies Research Center	\$3,000,000	East Hartford, CT	Flow Battery: Transformative Electrochemical Flow Storage System (TEFSS)
Research Center		Hartioru, Cr	System (TET SS)
(University of Texas,			United Technologies Research Center (UTRC), in partnership
Clipper Windpower,			with the University of Texas and Sandia National Laboratory,
Pratt & Whitney, Sandia			will develop a novel flow battery, a type of battery system that
National Labs)			pumps reactive chemicals through the battery cell when electricity is needed. The proposed flow battery uses a unique
			design to deliver 10X more power than conventional flow
			batteries. This breakthrough will enable a dramatic reduction
			in the size and cost of the flow battery. The advanced
			prototype flow battery developed in this program will provide
			energy storage at 1/3 the cost of current flow battery systems, and will lay the technical foundation for commercially-
			available grid-scale energy storage solution.
University of Southern	\$1,459,324	Los Angeles,	Battery: A Robust and Inexpensive Iron-Air
California		CA	
			Rechargeable Battery for Grid-Scale Energy Storage
(Jet Propulsion Laboratory (JPL))			Researchers at the University of Southern California and NASA's Jet Propulsion Laboratory will team to develop a high-
			performance rechargeable battery for large-scale energy
			storage on the electricity grid. Iron air batteries have the
			potential to store large amounts of energy inexpensively since
			they rely on extremely low-cost materials: iron, which costs
			less than \$.20/pound, and oxygen which is free in ambient air.
			Although, existing iron-air batteries have suffered from low energy efficiency and poor cycle life, in this high-risk
			technology development project, novel approaches will be
			tested, including new materials and structures to increase
			battery efficiency and cycle-life. This project will develop an
			iron-air proof of concept battery, the first step in the
			commercialization of this promising, low-cost battery chemistry.
	602 256 997		
TOTAL FUNDING	\$92,356,887		