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Why solid state battery?  

? 
Advantages Disadvantages 

 No flammable liquid electrolyte 
 Ultimate safety  
 No thermal runaway 

 Slower kinetics due to 
•  Low ionic conductivity 
•  High interfacial resistance  
•  Poor interfacial contact 

 High energy density   

 No safety devices required   

 Excellent cycling stability  

 Excellent shelf life 
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General Solid State Battery Construction 

Two electrodes are separated by solid state electrolyte layer 

– Electrolyte has high ionic conductivity and is electronically insulating 
Composite electrodes 

– Incorporate solid electrolyte into composite for fast ion transport 
– Incorporate conductive additive into composite for fast electron transport 
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Cathode 

SSE 

Li anode 



History 
1839 (Michael Faraday) The first solid state electrolyte, PbF2 at high temperature 
 

 

1884  (Warburg) Demonstrated Na+ conduction in glass 
1888   (Warburg & Tegetmeier) The first measurement of transference number  
~ 1900  (Walther Nernst) Discovery of “ Nernst glower” – a ceramic rod was heated to 

incandescence → SOFC (solid oxide fuel cell), oxygen gas sensor 
 
 
 
 

 
 

1914 (Tubandt & Lorenz) High Ag+ conductivity of AgI at 150oC (Ag/AgI/Ag)  
1966 (Kummer & Webber @ Ford Motor) Developed Na/S battery by using Na+ 

conductor “sodium beta alumina (β-Al2O3)”. 
1973 (P. V. Wright) 1978 (M. B. Armand, J. M. Chabagno, M. Duclot) First polymer electrolyte 
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Conduction Mechanisms 
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Vacancy conduction Interstitial conduction 

Schottky defect  
(a cation & anion vacancy pair) 

Frenkel defect  

T ↑ → defect ↑ → conductivity ↑  
 
∴shows Arrhenius relationship 
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Derived from Random walk theory 



Basic Theory – the concept of material design 

High mobile ion concentration 

High number of empty/vacant sites for ions hoping 

Small activation energy for conduction 

High number of conduction channel 

High polarizability of framwork ions 

In general, Amorphous > Crystalline 
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Solid Electrolyte 

Conventional thin-film micro-battery   

LIPON (lithium phosphorous oxynitride) (~10‐6 S cm‐1) 

Low cell capacity limits applications (only for special devices)   

 

Dry polymer electrolyte – Low ionic conductivity (10‐5‐10‐4 S/cm @ RT)  

Gel polymer electrolyte – still flammable, poor mechanical property, reasonable 

conductivity (~10‐3 S/cm) 
 

Inorganic or ceramic solid electrolyte 

JPS 2000, 135, 33 
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LISICON 
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JES 2001, 148, A742. 

Oxide vs. sulfide: larger, more polarizable framework 



Thio-LISICON – R. Kanno 

– Large ionic radius & more polarizability  

– Amorphous Li2S-SiS2-LiI and Li2S-SiS2-Li3PO4 (10‐4‐10‐3 S/cm) 

– Crystalline Rb4Cu16I7Cl13,RbAg4I5 have higher ionic conductivity than any copper 

and silver conducting glasses. This is not true for crystalline lithium ion 

conductors.  

 

 

 

– Ryoji Kano group 
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Li4GeS4 Li4-xGe1-xPxS4 

Li+ vacancy 

Ge4+ + Li+ → P5+ 



Thio-LISICON 

• Partial substitution of Ge4+with P5+ → Li+ vacancy  

JES 2001, 148, A742. 
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Li2S‐P2S5 Glass Ceramics – M. Tatsumisago 

• Glass-ceramic shows higher ionic conductivity 
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J. Solid State Electrochem.  2010, 14, 1761. 

Adv. Mater. 2005, 17, 918 



Li10GeP2S12 – R. Kanno 

• 12 mS/cm @ 27oC 

Nat. Mater.  2011, 10, 682. 
Chem. Mater. doi: 10.1021/cm203303y 

Agree with the computation results by G. Ceder group 

(9 mS/cm).  Proposed 3D channel rather than 1D.  
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Inorganic Solid Electrolytes 
Li10GeP2S12 
(R. Kanno) 

Thio-LISICON 
(Li3.25Ge0.25P0.75S4) 
(R. Kanno) 

70Li2S-30P2S5 

(Li7P3S11) 
(M. Tatsumisago & A. 
Hayashi) 

LLT 
(La0.5Li0.5TiO3) 
perovskite 

LLZ 
(Li7La3Zr2O12) 
garnet 

LATP 
(Li1.3Al0.3Ti1.7(PO4)3) 
NASICON 

Nat. Mater.  2011, 10, 682. 
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Schematic description of  
typical solid state lithium battery 

• High interfacial resistance  
• Poor interfacial contact 



ALD for Solid State Li Batteries 



www.energizer.com, 6 February 2012 

Yang Shao-Horn et al., Journal of 
the Electrochemical Society, 2002 

Energizer Primary Lithium Cells 

A four electron reaction, but it’s only 
a one time use battery! 

Overall Reaction 
FeS2 + 4Li+ + 4e‐ ↔ 2Li2S + Fe0  

894 mAh g‐1 

vs.  
Li1/2CoO2 + ½Li+ + ½e‐ ↔ LiCoO2

  

140 mAh g‐1 



- Dissolution of soluble polysulfides, Sn
2-   

 
- Agglomeration of elemental iron nanoparticles, Fe0 

 
Initial Discharge 
(1) FeS2 + 2Li+ + 2e‐ ↔ Li2FeS2 
(2) Li2FeS2 +2Li+ + 2e‐ ↔ 2Li2S + Fe0 

 
Subsequent Charge and Discharges 
(3) Fe0 + Li2S ↔ Li2FeS2 + 2Li+ + 2e‐ 
(4) Li2FeS2 ↔ Li2‐xFeS2 + xLi+ + xe‐ (0.5 < x < 0.8) 
(5) Li2‐xFeS‐2 ↔ FeSy + (2‐y)S + (2‐x)Li+ + (2‐x)e‐ 
 

Why is the FeS2 four electron redox reaction 
so troublesome? 

 



A model system: 
 Solvothermally synthesized FeS2 
 
‐ We study this ideal system in order to gain a better 
understanding of the FeS2 redox chemistry. (Solid state 
enabled four electron storage. Submitted to AEM; 
under review) 



A rechargeable FeS2/Li battery 
 
‐ First demonstration of a reversible FeS2/Li battery at the moderate temperature 
of 30-60 C. 
 
‐ Previously, the only reversible FeS2/Li batteries were thermal batteries with a 
molten salt electrolyte and an operating temperature in excess of 400 C 
(Henriksen et al. Handbook of Batteries, 2002). 



A rechargeable FeS2/Li battery 



Coulometric Titration and 
dQ/dv of FeS2 
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Focus Ion Beam (FIB) sample preparation of charged FeS2 
electrode for TEM analysis 



Nanoparticles of orthorhombic FeS2 explain better reaction kinetics of subsequent 
cycles.  We can now revise eqn. 5 to the following: 
 
(6) Li2‐xFeS‐2 ↔ 0.9ortho‐FeS2 + 0.1FeS8/7 + 0.085S + (2‐x)Li+ + (2‐x)e‐ 

Transmission Emission Microscopy (TEM) Analysis of 
charged FeS2 electrode 



- Coulometric titration 
- dQ/dV analysis 
- TEM and fast Fourier analysis 
- DFT simulation 

 

How did we revise the FeS2 redox chemistry 
at ambient to moderate temperature?  
 

Initial Discharge 
(1) FeS2 + 2Li+ + 2e- ↔ Li2FeS2 
(2) Li2FeS2 +2Li+ + 2e- ↔ 2Li2S + Fe0 

 
 
Subsequent Charge and Discharges 
(3) Fe0 + Li2S ↔ Li2FeS2 + 2Li+ + 2e- 
(4) Li2FeS2 ↔ Li2-xFeS2 + xLi+ + xe- (0.5 < x < 0.8) 
(5) Li2-xFeS-2 ↔ FeSy + (2-y)S + (2-x)Li+ + (2-x)e- 
 

(6) Li2-xFeS-2 ↔ 0.9ortho-FeS2 + 0.1FeS8/7 + 0.085S + (2-x)Li+ + (2-x)e- 
 

Advanced Energy Materials (in press) 



FeS2/Li Battery 
 
1. Threefold improvement over the specific energy density of 
the state of the art LiNi1/3Mn1/3Co1/3O2/graphite cells High 
Energy Density (1340 Wh/kg vs. 500 Wh/kg) 
 
2. Excellent cycling stability enabled by solid state electrolyte 
which successfully confines electro-active species  
 
3. FeS2: inexpensive, environmentally benign and energy dense 
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Solid Power, Inc. 

Doug Campbell, COO 

dougcampb@gmail.com 

(720) 300-8167 



• Spin‐Out of Univ. of Colorado at Boulder 
– Research under Profs. Conrad Stoldt and SeHee Lee 
– 3 year, $1.7M funding from DARPA DSO to establish feasibility 

• Need: Ultra‐high energy, rechargeable and safe batteries  
• Problem: Lithium metal anode can potentially meet this 

need; however, limited cathode capacity and cell stability 
have thus far stalled further development 

• Solution: Solid Power’s solid‐state battery configuration 
has shown feasibility in addressing these issues 

• Benefits: 
– High specific energy (600 Wh/kg vs. ~200 Wh/kg SOTA Li‐ion) 
– Eliminates most safety concerns associated w/ Li‐ion 

technology 
• IP: 3 patents covering cathode and anode chemistry 
• IP Rights: Exclusive Option from CU‐Boulder Tech‐Transfer 

 
 

29 



30 

Thank you for your attention! 

http://www.darpa.mil/default.aspx
http://www.darpa.mil/default.aspx
http://www.darpa.mil/default.aspx
https://plus.google.com/106895702434703841845
https://plus.google.com/106895702434703841845
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Strategies For Increasing Conductivity 
• Open framework  

– Sodium beta alumina, NASICON, Li3N, etc 
• Doping 

 
 
 
 
 
 
 
 
 
 

• Composites 
– LiI/Al2O3: high ionic conductivity along the grainboundary of LiI and Al2O3  
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Rep. Prog. Phys. 2004, 67, 1233. 



• β-alumina: M2O·nX2O3 (n = 5‐11, M = monovalent cation – alkali+, Cu+, Ag+, Ga+, 
In+, Tl+, NH4+, H3O+, X = trivalent cation – Al3+, Ga3+, Fe3+) 

• Sodium beta alumina: Na2O·Al2O3 

33 

partially occupied layer  fast Na+ 
conduction  

Sodium beta alumina 

NASICON: Na superionic conductor 
Na1+xZr2(P1‐xSixO4)3 (0<x <3) 

Partially occupied된 Na+ 이온 
3D하게 빠른 이온전달 가능 

Li3N 
Layered structure 
 

10‐3 S/cm (in‐plane, H‐
doped) 
 

Low decomposition 
potential: 0.445 V 



Conductivity Measurement 

DC e‐ + Li+ e‐ 

AC e‐ + Li+ e‐ + Li+ 
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Electrochem. Commun. 2012, 14, 25. 

Li/SiS2‐Li2S‐LiI/Li 

JES. 1988, 135, 859. 

JES. 2001, 84, 477. 

Arrhenius plot 

JES. 2001, 84, 477. 

→ slope: 활성화 에너지 (activation 
energy) → 저항 분리 (deconvolution) 
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