

MEITNER

Modeling-Enhanced Innovations Trailblazing Nuclear Energy Reinvigoration

Overview of the MEITNER Program & FOA

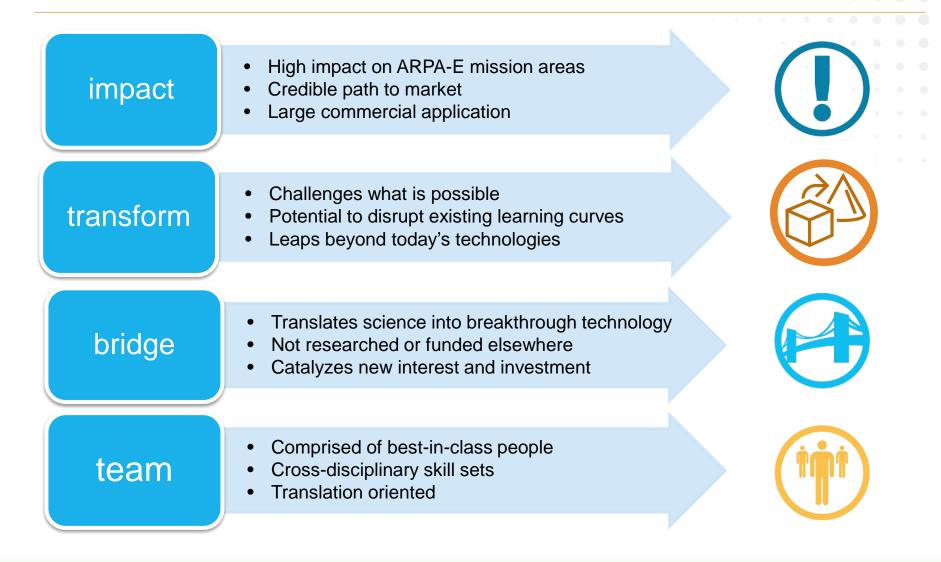
Dr. Rachel Slaybaugh Program Director, ARPA-E

Overview of Webinar

- About ARPA-E
- Program Motivation
- Program Overview
- Technologies of Interest
- Application Process & Anticipated Timeline
- NOTE: The contents of the MEITNER Funding Opportunity Announcement (FOA) are controlling. This slide presentation is a high-level summary only. The MEITNER FOA is available on ARPA-E's application portal, <u>https://arpa-e-foa.energy.gov/</u>

ARPA-E Mission

Mission: To overcome long-term and high-risk technological barriers in the development of energy technologies



Means:

- Identify and promote revolutionary advances in fundamental and applied sciences
- Translate scientific discoveries and cutting-edge inventions into technological innovations
- Accelerate transformational technological advances in areas that industry by itself is not likely to undertake because of technical and financial uncertainty

What Makes an ARPA-E Project?

MEITNER Program Concept

- ARPA-E is looking for transformational technologies that will enable advanced nuclear reactors to be commercially desirable products
- The new technologies will be evaluated in the context of a full advanced reactor plant design
- Modeling & Simulation, Subject Matter Experts, and Techno-Economic Analysis will feed back into the designs for integrated evaluation and strategic improvement
- Key experiments may also be done to strategically improve and/or demonstrate the technology
- Result: well-characterized reactors and technologies that can create a domestic supply chain

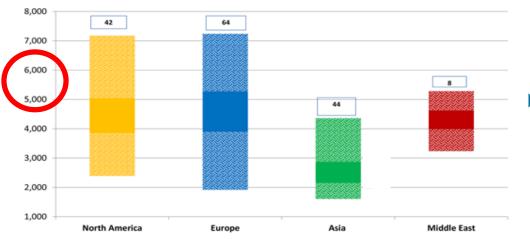
Motivation

Supposition:

 Advanced Nuclear Reactors can be commercially desirable products

Implication:

 If we can build and operate them so they are "walkaway" safe, quickly deployable, safeguardable, cost competitive, and relevant in a variety of markets


The Question:

What technologies can be developed to enable advanced reactors to meet these goals?

Motivation

2008 (updated August 2014), all data in 2013 USD

Note: Data collected from various publications and studies to keep track of nuclear power plants investment costs, since

Overnight capital cost range by region (US \$/kW)

- New build construction costs and times are large and unpredictable
- O&M is the bulk of operating cost

Avg. plant operating expenses (2015 \$/MWh)

Plant Type	Operation	Maintenance	Fuel	Total			
Nuclear	11.17	7.06	7.48	25.71			
Fossil Steam	5.16	5.41	26.70	37.26			
Gas Turbine	2.34	2.68	28.22	33.24			

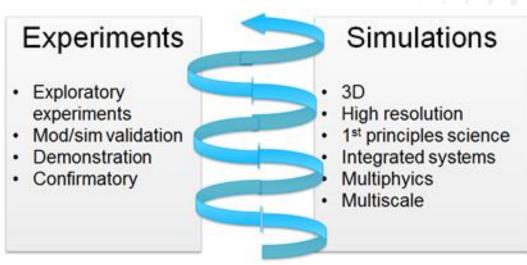
Motivation

- A substantial reduction of construction cost, O&M cost, and construction time is required
- Nuclear reactor plants are complex systems where many types and scales of technologies must work together seamlessly
- Design choices at each of those scales and for each of those technologies impact the rest of the system in terms of functionality, cost, and constructability
- ARPA-E is targeting development of enabling technologies that requires understanding the inter-relatedness of design choices

MEITNER Program

 Goal: Develop and demonstrate technologies that improve advanced reactor performance

ID	Metric	Units	State-of-the-Art	With New Technology*		
1	Overnight construction cost	\$/W _e	2-7			
2	On-site construction time	Months	> 60			
3	Total staffing level (on-site & off-site)	FTE/GW _e	450-750			
4	Emergency planning zone (EPZ)	Miles	10 and 50			
5	Time before human response required for an accident	Days	3			
6	Onsite backup power	kW _e	> 0 kW			
7a	Ramp rate without steam bypass	power capacity/min	5%			
7b	Process heat temperature	٥C	N/A			



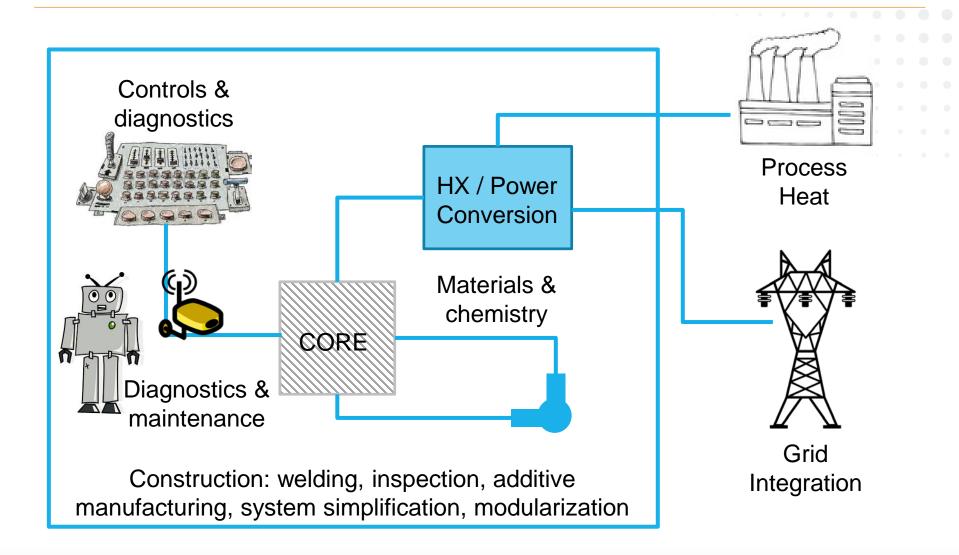
*Applicants are required to provide the projected performance based on the inclusion of their new technology into advanced reactors.

MEITNER Resource Team

Awardees will leverage a separately-funded Resource Team

- 1. Modeling & Simulation
- 2. Subject Matter Experts
- 3. Techno-Economic Analysis

Result: detailed design and impact characterization, better experiment design, strategic technology improvement



Technologies of Interest

- Sensors, data analytics, advanced controls, machine learning, model-based fault detection, and secure networks
- Robotics
- Advanced construction and manufacturing techniques
- Dramatic simplifications to balance of plant
- Reactor-specific technologies that must be demonstrated, e.g. high-temperature materials, corrosion control, chemistry
- Systems that dramatically improve plant performance, e.g. power conversion, system efficiency
- Technologies to enable grid integration

Technologies of Interest

Application Process & CP Deadline

- Funding Opportunity Announcement (FOA) available on ARPA-E's application portal, <u>https://arpa-e-foa.energy.gov/</u>.
- Concept papers for MEITNER due Monday, December 4, 2017 by 5:00pm EST
- Questions? Please email the ARPA-E Contracting Officer at <u>ARPA-E-CO@hq.doe.gov</u>
 - Deadline for questions on the MEITNER FOA Concept Papers are due November 24th at 5:00pm EST

											•
											•
											•

https://arpa-e.energy.gov