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Models of Quantum Computation

Analog Quantum Computer

NISQ* Quantum Computer

Fault Tolerant Quantum Computer

* NISQ = Noisy Intermediate Scale Quantum
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Analog Quantum Computation

• What does it do?

• Apply control parameters to evolve a real-

world quantum system in time

• Natural use cases


• Quantum Simulation (open and closed), 
Optimization


• Arguments For

• Very efficient use of quantum hardware 

resources

• Very fast (no abstraction layers)


• Arguments Against

• Highly specialized to specific applications 

(i.e. limited Hamiltonian options)

• Hardware noise can be limiting

i
d
dt

Ψ(t)⟩ = H(t) Ψ(t)⟩

Solve this ODE

t ∈ [0,T], Ψ0⟩
Evolution Time Initial State

Hdwave(t) = A(t)(∑
i

̂σx
i )+B(t) ∑

i

hi ̂σz
i + ∑

i,j

Jij ̂σz
i ̂σz

j

2

lations using the polaron transformation [42] (also called
the non-interacting blip approximation [43]) that allow
investigations beyond the weak-coupling limit give the
strongest quantitative agreement with the D-Wave hard-
ware [44], but this approach tends to be limited to the
lowest lying energy levels of the system. The simplicity
and interpretability of the AME makes it a convenient
choice.

To model fluctuations in the programmed Hamilto-
nian, we use randomness in its parameters. Mixtures
of random Hamiltonians with longitudinal field noise has
been shown to play a major role in explaining the for-
mation of the anomalous single qubit response to mag-
netic field changes [31, 32] and of the e↵ective spurious
links [31, 33].

One of the primary criticisms of the D-Wave hardware
is that its output statistics can often be captured by sim-
ple classical models, such as the Spin-Vector Monte Carlo
(SVMC) algorithm [45, 46] or Spin-vector Langevin dy-
namics [39, 47]. These methods provide descriptions of
evolutions in the semi-classical energy landscape of the
qubit system [48], which turns out to coincide well with
the dynamics of superconducting flux qubits in the strong
system-bath coupling limit [49]. While these descriptions
can quite often describe many qualitative features of the
hardware, they do not necessarily reproduce all experi-
mental results [40]. Our aim in this work is not to make
a claim that the output statistics can only be described
by a fully quantum open system description. Instead, we
will show that a quantum description of the dynamics
requires both thermal and magnetic field fluctuations to
fully account for the system’s behavior.

One main challenge in modeling the D-Wave hardware
dynamics is that many experimental parameters are fixed
and cannot be tuned by the user: the state preparation is
predetermined and the system can only be measured at
the end of the anneal in the computational basis. There-
fore, there exists a substantial risk of over-fitting obser-
vations with di↵erent types of models when we consider
large systems with multiple spins and complex interac-
tions. A key ingredient that we introduce to overcome
data scarcity is what we call the h-stop protocol that
currently can be performed only for systems without cou-
plings. This modification of the annealing protocol e↵ec-
tively enables us to get information about the state of the
system during the dynamics. Leveraging this new proto-
col, we will demonstrate that both thermal fluctuations
and longitudinal field noise are necessary ingredients to
explain the dynamic properties measured in the D-Wave.
In particular, we show that the h-stop protocol dynam-
ics cannot be reproduced with thermal fluctuations alone
even though it can be approximated with closed system
dynamics and longitudinal field noise at small annealing
time and input magnetic field. This highlights the im-
portance of slower fluctuations in the D-Wave quantum
annealing dynamics.

FIG. 1. The D-Wave default annealing schedule for the
DW 2000Q LANL system. The red line and the blue dashed
line represent the annealing schedules A(s) and B(s) in
Eqt. (1), respectively. The unit of energy of the annealing
schedule is expressed in Hertz after setting ~ = 1.

II. BACKGROUND AND DYNAMIC MODELS

The Hamiltonian realized in the D-Wave quantum an-
nealers is the transverse field Ising Model
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where the annealing schedule is defined by functions A(s)
and B(s), with normalized time parameter s = t/⌧ ,
where t 2 [0, ⌧ ] is the current time in the anneal and ⌧ is
the total anneal time. The programmed transverse field
strength and the programmed longitudinal field strength
on qubit i are given by ⇠i, and hi respectively. The cou-
pling strength between qubits i and j is given by Jij .
The user is only able to modify the programmed longitu-
dinal field strengths and coupling strengths. The Pauli
operators on each qubit are given by �

x
i and �

z
i , and

measurements are performed in the computational basis,
such that |0i = |"i and |1i = |#i. The state of the system
is described by its density matrix ⇢(s) which is initially
prepared in the ground state of the Hamiltonian at s = 0,
i.e., ⇢(0) = |+i h+|, where |+i =

N
i

1p
2
(|"i+ |#i). The

annealing protocol slowly interpolates between a trans-
verse field Hamiltonian and the target Ising Hamiltonian
on the longitudinal component, i.e., A(0) � B(0) and
A(1) ⌧ B(1), see Fig 1. It is customary to measure en-
ergy in units of ~ (or equivalently setting ~ = 1), with
the convention that fields and couplings are dimension-
less and the annealing is expressed in Hertz.
For our experiments, we made use of the DW 2000Q

Hardware from D-Wave Systems which was maintained
by Los Alamos National Laboratory. On the 2000Q chip,
D-Wave uses superconducting flux qubits to implement
a quantum annealer with a so-called Chimera graph con-
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entanglement and disorder, we employ a tensor-network dynamics  
method known as time-evolution block decimation (TEBD)30. 
Reducing the TEBD bond dimension D (Supplementary Section E) 
to 20 provides a heuristic model of limited entanglement entropy S,  
given that S ≤ 2log(D) (ref. 31); this slightly lowers the peak  
(Fig. 3c), but makes it dependent on ta, inconsistent with the experi-
mental data. Further lowering D worsens the agreement with QA 
(Supplementary Fig. 9), but combining D = 20 with disorder in 
the QA Hamiltonian improves it (Supplementary Information). 
Combining these effects gives a close match to the QA results  
for J = −1.4 (Fig. 3d) and other coupling strengths (Supplementary 
Fig. 10). Moreover, we find that D = 20 is a lower bound on the bond 
dimension, in the sense that our QA data display an opposite trend 
with ta to that of TEBD for D < 20, but our QA and TEBD data agree 
for D ≥ 20 (Supplementary Fig. 16).

Previous studies have shown logarithmic, rather than power-law, 
scaling of Ō in the presence of large disorder, with Ji uniformly 
sampled in [0, Jmax] (refs. 32,33). Although the much smaller disorder 
probed in Fig. 3d (σ = 0.05) substantially suppresses the peak in 
$

,,

S

, the effect on kink density is small, especially for fast anneals 
where Ō is large (Supplementary Fig. 11). Furthermore, the disorder  
in this case arises from technical challenges in QA, which are the 
most severe for fast anneals. Therefore, a significant region of 
power-law scaling, as seen in our experimental results (Fig. 2a), is 
consistent with our understanding of disorder.

Next, we investigate finite-size effects. When ta is sufficiently large 
as a function of L, the dynamics are dominated by a single Landau–
Zener (LZ) transition34, and the ground-state probability PGS follows 
the adiabatic theorem35. This crossover occurs when -Ō ≈ � (ref. 33). 
The LZ transition probability is expected to exponentially decay in 
the annealing time, in contrast to the power-law dependence in the 
Kibble–Zurek regime. For one-dimensional spin chains, it is possi-
ble to obtain an analytical solution20 (Supplementary Information):
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where b is defined in equation (4).
Figure 4a shows the QA measurements for ferromagnetic and 

antiferromagnetic chains of equal coupling magnitude (J = ±0.95). 
Since L is even, the two Ising Hamiltonians are gauge equivalent 

and we expect similar experimental outcomes. We plot the data  
in the range 5 ≤ ta ≤ 40 ns and 0.1 ≤ PGS ≤ 0.9 for values of L rang-
ing from 8 to 32. Figure 4a also shows the results of the exact  
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Fig. 2 | Kink density scaling and distribution. a, QA data for weak coupling (J!=!0.12) and strong coupling (J!=!−1.4, used for b and c) for a range of 
temperatures and annealing times. The weak coupling regime exhibits anti-Kibble–Zurek behaviour, with a local minimum in Ō. For strong coupling and  
fast anneals, Ō is unaffected by temperature and quantitatively agrees with the closed-system coherent quantum theory (dotted green lines; equation (4)). 
b, Best-fit thermal (Boltzmann) model is significantly broader than the measurement results, which are better described by a Gaussian model, as expected 
given the predicted binomial form. c, First three cumulants of the kink distribution. The lines indicate coherent theory. The markers and error bars indicate 
the bootstrap mean and 95% statistical confidence intervals, respectively (Methods).
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Fig. 3 | Normalized kink–kink correlations. a, QA data with J!=!−1.4 (left) 
have a positive peak in $,,

S

, which are compared with closed-system 
quantum models. b, Exact time evolution of the fermionized model. c, TEBD 
with limited bond dimension D!=!20. d, TEBD with D!=!20 and σ!=!0.05 
Gaussian disorder added to the longitudinal fields and couplings. All the 
models have $,,

S

→ −� as r/ξ!→!0. The markers and error bars in a and 
d indicate the bootstrap mean and 95% statistical confidence intervals, 
respectively, across experiments and disorder realizations.
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“Coherent quantum annealing in a programmable 2000-qubit Ising chain”
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NISQ Gate-Based Computation

• What does it do?

• Apply quantum imperfect gates to implement a 

noisy universal quantum computation

• Note: these usually include arbitrary rotation gates 


• Natural use cases

• Quantum Simulation (closed), Variational Quantum 

Algorithms, Quantum Machine Learning (?)

• Arguments For


• Flexible (all types of quantum computations are in 
scope)


• Fast (just 1 abstraction layer)

• Arguments Against


• Hardware noise can be limiting

• Unclear how to extend beyond qubit coherence time

18:56 Abhijith J. et al.

Fig. 35. The CNOT connectivity and error rates of the ibmqx2 Computer (le!) followed by the Single Edge
(center le!), Triangle (center right) and four edge Triangle+Edge (right) graphs considered in the proof-of-
concept experiments.

Fig. 36. An IBM "antum Experience score illustrating an implementation of the MaxCut edge gate Equa-
tion (71).

Fig. 37. An IBM "antum Experience circuit for 2-round QAOA of MaxCut on the “Triangle plus Edge” graph.
We can see the edge gate from Figure 36 replicated for the edges of the triangle between qubitsq[2],q[3],q[4]
as well as the edge between qubits q[1],q[2]. Similarly, the vertical layers of U3 gates implement e−i βB.

1 and 2 inline, with the phase shift of the U1 (−γ ) gate applied to odd parities. For higher than
quadratic terms of Z -operators (such as ZiZ jZk terms in the MaxE3Lin2 problem [49]), parities
can be computed by CNOT gates from all other qubits into a central qubit.

The next term in the loop is the application of the β angle, which is expanded as follows:

e−i βX = e
−i β !"

#
0 1
1 0

$%
& =

(
cos(β ) −i sin(β )
−i sin(β ) cos(β )

)
. (72)

Careful inspection of the IBM Quantum Experience gates reveals that this operation is imple-
mented byU3 (2βk ,−π/2,π/2). So we need to apply this gate to every qubit in the register. Putting
all of these components together, Figure 37 presents an IBM Quantum Experience circuit for im-
plementing the quantum subroutine of QAOA for MaxCut on the “Triangle plus Edge” graph from
Figure 35 with parameters,

r = 2 : γ1 = 0.2 · π = 0.628.., β1 = 0.15 · π = 0.471..,
γ2 = 0.4 · π = 1.256.., β2 = 0.05 · π = 0.157...

12.4 A Proof-of-Concept Experiment
With a basic implementation of QAOA for MaxCut in qiskit, a preliminary proof-of-concept study
is conducted to investigate the e!ectiveness of QAOA for "nding high-quality cuts in the (a) Single

ACM Transactions on Quantum Computing, Vol. 3, No. 4, Article 18. Publication date: July 2022.

“Variational quantum algorithms” Cerezo et. al.

arXiv:2012.09265
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FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function
C(✓), with ✓ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize
the cost, and (possibly) a set of training data {⇢k} used during the optimization. Here, the cost can often be expressed in
the form in Eq. (3), for some set of functions {fk}. Also, the ansatz is shown as a parameterized quantum circuit (on the
left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses
a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that
leverages the power of optimizers to navigate the cost landscape C(✓) and solve the optimization problem in Eq. (1). Once a
termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends
on the precise task at hand. The red box indicates some of the most common types of outputs.

ciency. In this Review, we discuss the exciting prospects
for VQAs, and we highlight the challenges that must be
overcome to obtain the ultimate goal of quantum advan-
tage.

II. BASIC CONCEPTS AND TOOLS

One of the main advantages of VQAs is that they pro-
vide a general framework that can be used to solve a
variety of problems. Although this versatility translates
into different algorithmic structures with different levels
of complexity, there are basic elements that most (if not
all) VQAs have in common. In this section we review the
building blocks of VQAs.

Let us start by considering a task one wishes to solve.
This implies having access to a description of the prob-
lem, and also possibly to a set of training data. As
schematically shown in Fig. 1, the first step to develop-
ing a VQA is to define a cost (or loss) function C which
encodes the solution to the problem. One then proposes
an ansatz, that is, a quantum operation depending on
a set of continuous or discrete parameters ✓ that can
be optimized (see below for a more in-depth discussion
of ansatzes). This ansatz is then trained in a hybrid
quantum-classical loop to solve the optimization task

✓⇤ = argmin
✓

C(✓) . (1)

The trademark of VQAs is that they use a quantum com-
puter to estimate the cost function C(✓) (or its gradient)
while leveraging the power of classical optimizers to train
the parameters ✓. In what follows, we provide additional

details for each step of the VQA architecture shown in
Fig. 1.

A. Cost function

A crucial aspect of a VQA is encoding the problem
into a cost function. Similar to classical machine learn-
ing, the cost function maps values of the trainable pa-
rameters ✓ to real numbers. More abstractly, the cost
defines a hyper-surface usually called the cost landscape
(see Fig. 1) such that the task of the optimizer is to nav-
igate through the landscape and find the global minima.
Without loss of generality, the cost can be expressed as

C(✓) = f ({⇢k}, {Ok}, U(✓)) , (2)

where f is some function, U(✓) is a parametrized uni-
tary, ✓ is composed of discrete and continuous parame-
ters, {⇢k} are input states from a training set, {Ok} are
a set of observables. Often it is useful, and possible, to
express the cost in the form

C(✓) =
X

k

fk
�
Tr[OkU(✓)⇢kU

†(✓)]
�
, (3)

for some set of functions {fk}. Note that the task at hand
will determine the choice of f in Eq. (2) or the choice
of {fk} in Eq. (3). During the optimization, one uses a
finite statistic estimator of the cost or its gradients. (See
below for an overview of optimizers used to train the cost
function.)

Let us now discuss desirable criteria that the cost func-
tion should meet. First, the cost must be ‘faithful’ in

Variational Quantum Algorithm Structure

NISQ Score (Qiskit)

Un |… |U3 |U2 |U1 |ψ⟩

Apply Unitary Matrices ( ) 

to a quantum state ( )

U
ψ

https://arxiv.org/abs/2012.09265
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Fault-Tolerant Gate-Based Computation

• What does it do?

• Apply quantum error corrected gates to implement 

perfect universal quantum computation

• Note: a restrictive gate set (e.g., Clifford+T)


• Natural use cases

• Quantum Simulation (high-accuracy), Factoring, 

Linear Systems, Nonlinear Systems (?)

• Arguments For


• Reliable, Algorithms with Proofs

• Quantum Error Correction (QEC) enables going 

beyond the limit of qubit coherence time

• Arguments Against


• Requires a LOT of physical qubits

• Algorithms require a LOT of gates (e.g., >106)

• Slow, QEC overheads take time (2 abstraction layers)

q1

q2

q3

14

FIG. 3. Estimates of the resources required to implement three applications, assuming the qubit parameter
examples specified in Table II. We explore a trade-o↵ in the quantum dynamics application by consider-
ing two implementations: one which uses su�cient T factories to supply the needs of the shortest-depth
algorithm and another which slows the algorithm down, allowing for a reduced number of T factories.

the other models results in about three orders of magnitude longer application run times. For
quantum chemistry, this leads to impractical runtimes of more than a century.

To build the tool and obtain these estimates we have made many choices including what algo-
rithmic, compilation and QEC options to include and also what approximations and assumptions to
make. Other resource estimation works have made di↵erent choices, which leads to small di↵erences
in estimates [42]. In the appendices, we point out more explicitly these choices, assumptions and
approximations, and in particular, collect together our primary assumptions in Appendix G. We
anticipate that future work will extend and improve the tool and framework in two ways. Firstly,
the estimates for a given stack will become more accurate as assumptions and approximations are
honed and made more realistic, for example by including more detailed and nuanced noise models.
Secondly, the estimates will become more favorable as improved solutions and optimizations are
included in the stack and resource models, such as algorithmic improvements and hand-optimized
compilation of important subroutines. We expect the broad conclusions that we draw from these
results in the next section to hold true despite these choices, approximations and assumptions.
This is because our conclusions are relatively insensitive to order of magnitude changes in resource
estimates.

IV. TECHNOLOGICAL IMPLICATIONS AND CONCLUSIONS

More than two decades ago, DiVincenzo [36] specified a set of fundamental requirements that
any usable quantum computer should satisfy. For example, DiVincenzo identified the necessity of
low error rates, by requiring long relevant decoherence times, much longer than the gate operation
time. Since then, a variety of qubit technologies that satisfy DiVincenzo’s criteria have been
developed, including technologies such as superconducting and trapped ion qubits. However, it is
an open question as to what additional conditions beyond DiVincenzo’s criteria a qubit technology

“Assessing requirements to scale to practical quantum advantage”

arXiv:2211.07629
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FIG. 1. Implementing surface code logical qubits. a,
Schematic of a 72-qubit Sycamore device with a distance-5
surface code embedded, consisting of 25 data qubits (gold)
and 24 measure qubits (blue). Each measure qubit is associ-
ated with a stabiliser (blue colored tile, dark: X, light: Z).
Representative logical operators ZL (black) and XL (green)
traverse the array, intersecting at the lower-left data qubit.
The upper-right quadrant (red outline) is one of four subset
distance-3 codes (the four quadrants) we compare to distance-
5. b, Illustration of a stabiliser measurement, focusing on one
data qubit (gold) and one measure qubit (blue), in perspective
view with time progressing to the right. Each qubit partic-
ipates in four controlled-Z (CZ) gates with its four nearest
neighbours, interspersed with Hadamard gates (H), and fi-
nally, the measure qubit is measured and reset to |0i. Data
qubits perform dynamical decoupling (DD) while waiting for
the measurement and reset. All stabilisers are measured in
this manner concurrently. Cycle duration is 921 ns, includ-
ing 500 ns measurement and 160 ns reset. c, Cumulative
distributions of errors for single-qubit gates, CZ gates, mea-
surement, and data qubit DD (idle during measurement and
reset). Benchmarked in simultaneous operation using random
circuit techniques, on the 49 qubits used in distance-5 and the
four CZ layers from the stabiliser circuit [31, 32]. Vertical lines
are means.

surface code.
We implement the surface code on an expanded

Sycamore device [32] with 72 transmon qubits [39] and
121 tunable couplers [40, 41]. Each qubit is coupled to
four nearest neighbours except on the boundaries, with
mean qubit coherence times T1 = 20 µs and T2,CPMG =
30 µs. As in Ref. [42], we implement single-qubit rota-
tions, controlled-Z (CZ) gates, reset, and measurement,
demonstrating similar or improved simultaneous perfor-
mance as shown in Fig. 1c.

The distance-5 surface code logical qubit is encoded
on a 49-qubit subset of the device, with 25 data qubits
and 24 measure qubits. Each measure qubit corresponds
to one stabiliser, classified by its basis (X or Z) and the

number of data qubits involved (weight, 2 or 4). Ide-
ally, to assess how logical performance scales with code
size, we would compare distance-5 and distance-3 logi-
cal qubits under identical noise. Although device inho-
mogeneity makes this comparison difficult, we can com-
pare the distance-5 logical qubit to the average of four
distance-3 logical qubit subgrids, each containing 9 data
qubits and 8 measure qubits. These distance-3 logical
qubits cover the four quadrants of the distance-5 code
with minimal qubit overlap, capturing the average per-
formance of the full distance-5 grid.

In a single instance of the experiment, we initialise the
logical qubit state, run several cycles of error correction,
then measure the final logical state. We show an example
in Fig. 2a. To prepare a ZL eigenstate, we first prepare
the data qubits in |0i’s and |1i’s, an eigenstate of the
Z stabilisers. The first cycle of stabiliser measurements
then projects the data qubits into an entangled state that
is also an eigenstate of the X stabilisers. Each cycle con-
tains CZ and Hadamard gates sequenced to extract X
and Z stabilisers simultaneously, and ends with the mea-
surement and reset of the measure qubits. In the final
cycle, we also measure the data qubits in the Z basis,
yielding both parity information and a measurement of
the logical state. Preparing and measuring XL eigen-
states proceeds analogously. The instance succeeds if the
corrected logical measurement agrees with the known ini-
tial state; otherwise, a logical error has occurred.

Our stabiliser circuits contain a few modifications [43]
to the standard gate sequence described above, includ-
ing phase corrections to correct for unintended qubit fre-
quency shifts [44] and dynamical decoupling gates during
qubit idles. We also remove certain Hadamard gates to
implement the ZXXZ variant of the surface code [45, 46],
helping to symmetrise the X- and Z-basis logical error
rates. Finally, during initialization, the data qubits are
prepared into randomly selected bitstrings. This ensures
that we do not preferentially measure even parities in the
first few rounds of the code, which could artificially lower
logical error rates due to bias in measurement error.

III. ERROR DETECTORS

After initialisation, parity measurements should pro-
duce the same value in each cycle, up to known flips ap-
plied by the circuit. If we compare a parity measurement
to the corresponding measurement in the preceding cycle
and their values are inconsistent, a detection event has
occurred, indicating an error. We refer to these compar-
isons as detectors.

The detection event probabilities for each detector in-
dicate the distribution of physical errors in space and
time while running the surface code. In Fig. 2, we
show the detection event probabilities in the distance-
5 code (b, c) and the distance-3 codes (d, e) running
for 25 rounds, as measured over 50,000 experimental in-
stances. For the weight-4 stabilisers, the average detec-

“Suppressing quantum errors by 
scaling a surface code logical qubit”
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Who is doing what?
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Three Types of Commercial Quantum Computers

Noisy

Analog 

Noisy

Gate-Based 

Fault-Tolerant

Gate-Based 

Who?

And many others…

Public Roadmaps

FTQC proposed by 2026-2030

Available Today Available Soon?
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Why so many?

There is no “transistor” for 
quantum computing… yet
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Qubit Technologies

Domain of Science - Dominic Walliman
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Pros and Cons of NISQ Hardware Platforms

Feature Superconducting 
Circuits Trapped Ions Neutral Atoms Photonic

Topological / 
Quantum Dot / 

Silicon Spin

Speed Fast Slow Slow ? ??

Noise Medium Low Low ? ??

Scale

(qubits demonstrated)

High

500-5000

Low

10-50

Medium

100-1000 ? ??

Connectivity Sparse High Sparse ? ??

No clear winner,

co-design of hardware and application maximizes performance

Just the vendors I know the best…
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Implemenation Tradeoffs

“Quantum computing enhanced computational catalysis”

arXiv:2007.14460

PHYSICAL REVIEW RESEARCH 3, 033055 (2021)
Editors’ Suggestion

Quantum computing enhanced computational catalysis

Vera von Burg ,1 Guang Hao Low,2 Thomas Häner ,3 Damian S. Steiger ,3 Markus Reiher ,1,*

Martin Roetteler,2 and Matthias Troyer 2,†

1Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
2Microsoft Quantum, Redmond, Washington 98052, USA

3Microsoft Quantum, 8038 Zürich, Switzerland

(Received 4 August 2020; revised 14 October 2020; accepted 13 April 2021; published 16 July 2021)

The quantum computation of electronic energies can break the curse of dimensionality that plagues many-
particle quantum mechanics. It is for this reason that a universal quantum computer has the potential to
fundamentally change computational chemistry and materials science, areas in which strong electron correlations
present severe hurdles for traditional electronic structure methods. Here we present a state-of-the-art analysis of
accurate energy measurements on a quantum computer for computational catalysis, using improved quantum
algorithms with more than an order of magnitude improvement over the best previous algorithms. As a
prototypical example of local catalytic chemical reactivity we consider the case of a ruthenium catalyst that can
bind, activate, and transform carbon dioxide to the high-value chemical methanol. We aim at accurate resource
estimates for the quantum computing steps required for assessing the electronic energy of key intermediates
and transition states of its catalytic cycle. In particular, we present quantum algorithms for double-factorized
representations of the four-index integrals that can significantly reduce the computational cost over previous
algorithms, and we discuss the challenges of increasing active space sizes to accurately deal with dynamical
correlations. We address the requirements for future quantum hardware in order to make a universal quantum
computer a successful and reliable tool for quantum computing enhanced computational materials science and
chemistry, and identify open questions for further research.

DOI: 10.1103/PhysRevResearch.3.033055

I. INTRODUCTION

Quantum computing [1–4] has the potential to efficiently
solve some computational problems that are exponentially
hard to solve on classical computers. Among these prob-
lems, one of the most prominent cases is the calculation of
quantum electronic energies in molecular systems [5–9]. Due
to its many applications in chemistry and materials science,
this problem is widely regarded as the “killer application” of
future quantum computers [10], a view that was supported
by our first rigorous resource estimate study for the accurate
calculation of electronic energies of a challenging chemical
problem [11].

At the heart of chemistry is predicting the outcome of
chemical processes in order to produce chemicals, drugs, or
functional molecular assemblies and materials. A prerequisite
for this ability to predict chemical processes is an under-
standing of the underlying reaction mechanisms. Quantum
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mechanics allows one to assign energies to molecular struc-
tures so that a comparison of these energies in a sequence of
molecular transformations can be taken as a measure to rate
the viability of such a chemical reaction. Relative energies
are a direct means to predict reaction heats and activation
barriers for chemical processes. However, the reliability of
such predictions depends crucially on the accuracy of the
underlying energies, of which the electronic energy is often
the most important ingredient. This energetic contribution of
the dynamics of the electrons in a molecule can be calculated
by solving the electronic Schrödinger equation, typically done
in a so-called one-particle basis, the set of molecular orbitals.

The computational complexity of an exact solution of
the electronic Schrödinger equation on classical computers
is prohibitive as the many-electron basis expansion of the
quantum state of interest grows exponentially with the number
of molecular orbitals (often called the “curse of dimensional-
ity”). An exact diagonalization of the electronic Hamiltonian
in the full many-electron representation is therefore hard and
limited to small molecules that can be described by compara-
tively few (on the order of 20) orbitals. Once accomplished, it
is said that a full configuration interaction (full-CI) solution in
this finite orbital basis has been found. Since typical molecular
systems will require on the order of 1000 molecular orbitals
for their reliable description, exact-diagonalization methods
need to restrict the orbital space to about 20 orbitals chosen
from the valence orbital space [called complete active space
(CAS) CI]. Accordingly, approximate methods have been

2643-1564/2021/3(3)/033055(16) 033055-1 Published by the American Physical Society
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FIG. 3. Protocol of computational catalysis with the key step of quantum computing embedded in black, which is usually accomplished
with traditional methods such as CASSCF, DMRG, or FCIQMC (see text for further explanation).

existing or to design new catalysts with enhanced catalytic
properties.

Accuracy matters: A reaction rate depends exponen-
tially on the energy difference between a transition state
structure and its corresponding stable reactants, which are
connected by an elementary reaction step. Because of
this exponential dependence, highly accurate energy differ-
ences are decisive. While many contributions enter these
free energy differences, the electronic energy difference is
the most crucial one in bond breaking and bond making
processes.

Electronic energies are key components (steps 1–7 in
Fig. 3): Electronic energies are notoriously difficult to cal-
culate and standard approximations are affected by unknown
errors that can be large. Only for electronically simple struc-
tures, so-called closed-shell single-determinant electronic
structures, well-established methods exist that run efficiently
on a classical computer (such as explicitly correlated local
coupled cluster schemes with, at least, perturbatively treated
triple excitations [41]). For general electronic structures, how-
ever, no method of comparable accuracy exists that is at the
same time feasible for moderately sized molecules. In partic-
ular, for strong correlation cases, which require more than one
Slater determinant for a qualitatively correct description of the
electronic wave function, it can be hard to obtain an accurate
total electronic energy, which then enters the calculation of
relative energies.

In our previous work [11] we considered a quantum com-
puter of moderate size within reach in the not too distant
future. Moreover, we assumed that such a machine might have
100 to 200 logical qubits available for the representation of a
quantum state. Such a state would be constructed from single-
particle states, i.e., molecular orbitals for molecular structures.
For decades it has been the goal of quantum chemistry to
devise methods that efficiently construct approximations to a
many-electron state represented in terms of orbitals. If the full
many-electron Hamiltonian is expressed and diagonalized in
a complete many-electron (determinantal) basis constructed
from such a one-electron basis, then a full-CI calculation may
be carried out. Such an exact diagonalization is, however,
routinely only feasible for about 18 orbitals [42] (a record
calculation was recently carried out for 24 orbitals [43]) due
to the exponentially growing number of many-electron states
with the number of orbitals.

Required accuracy: A reasonable target accuracy for rela-
tive energies (and therefore also for total electronic energies of
individual molecular species) is about 1 mHartree, if not 0.1
mHartree. This corresponds to about 2.6 and 0.26 kJ/mol, re-
spectively. Note that thermal energy RT (T being temperature
and R the gas constant) at room temperature is on the order
of 2.6 kJ/mol, which may be related to the kinetic energy of
a reactant molecule at average velocity (compare this to the
spread observed for different DFT functionals in our example
in the last section).
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FIG. 6. (Left) Scaling of minimized Toffoli cost across all configurations of the catalytic cycle with respect to active space size, for
performing phase estimation to a precision of 1 mHartree in the double-factorized representation. The fitted power-law curve has an exponent
arising from the product αDFcW ∼ αDF

√
MN/"E in Eqs. (1) and (19) (middle) where M is the number of eigenvectors and (right) the

normalizing constant is αDF.

assumed gate times of 100 ns for fault tolerant logical gate
operations, which may be a long-term achievable goal. As a
more realistic assumption for mid-term fault tolerant quantum
computers we now expect that the physical gate times in
current quantum computer architectures range from tens of
nanoseconds for solid state qubits to tens of microseconds for
ion traps. Realizing fault tolerance by using quantum error
correction with the surface code [78], will lead to logical gate
times for a Toffoli gate of about 10 µs to 10 ms depending on
the architecture. The lower estimate of 10 µs means that 1010

Toffoli gates correspond to a runtime of 28 h or about a day,
while the upper estimate of 10 ms would correspond to several
years. These considerations show that fast gate times will
be essential for realistic quantum computation for chemical
catalysis.

The above estimates do not explicitly consider the cost
of layout, i.e., the mapping onto a nearest neighbor planar
square lattice topology of error corrected logical qubits. We
argue that this overhead is negligible, since the subroutine
with dominant cost, the table lookup discussed in the Sup-
plemental Material is based on FANOUT operators [79] and
maps well to this topology. Moreover, we here assume that
any overhead of layout as well as Clifford gates are included
in the assumed gate time for a Toffoli gate, as these domi-
nant FANOUT operations may be implemented in a constant

Clifford depth of 4 in parallel with the sequentially applied
Toffolis.

Fault tolerant gates also have an overhead in the number of
qubits, with hundreds to thousands of physical qubits needed
per logical qubit [11,78], depending on the quality of the
qubits. 4000 logical qubits will thus correspond to millions of
physical qubits. This implies the need for a scalable quantum
computer architecture, scaling to millions of qubits.

D. State preparation

To determine the ground state energy using phase estima-
tion, it is required to prepare a trial state |ψtrial〉 which has a
high overlap with the true ground state |ψ0〉 of the Hamilto-
nian H as discussed in Sec. IV. While the exact ground state is
unknown, we used state-of-the-art DMRG calculations to ob-
tain an approximate ground state |ψ̃0〉 for each of our systems
(see the Supplemental Material [28] for further details). An
approximate configuration interaction wave function obtained
by reconstruction [80] from the corresponding matrix product
state wave function optimized with DMRG served to provide
an overlap with the trial state prepared on the quantum com-
puter. Since the trial state is chosen to be HF determinant for
this case, the overlap is given by the square of the coefficient
in front of the Hartree-Fock determinant in the configuration

TABLE II. Comparison of our new double-factorization approach for HDF applied to the FeMoco active site of nitrogenase (N = 54) with
prior approaches based on Trotterization [11] or qubitization [22] using the unfactorized H or single-factorized HCD Hamiltonian, and also
for the VIII structure in the catalytic cycle (N = 65) where all examples apply the incoherent truncation scheme with the same threshold of
εin = 1 mHartree.

Structure Approach α / Hartree Terms Qubits Toffoli gates Comments

FeMoco Qubitization HDF 300.5 1.3 × 106 3600 2.3 × 1010 εin = 1 mHartree
Qubitization HDF 296.9 2.8 × 105 3600 1.22 × 1010 Optimistic εin = 73 mHartree

Trotterization H [11] – – 142 1.5 × 1014 Optimistic Trotter number
Qubitization H [22] 9.9 × 103 4.4 × 105 5100 2.3 × 1011 Truncation evaluated by CCSD

Qubitization HCD [22] 3.6 × 104 4.0 × 105 3000 1.2 × 1012 Truncation evaluated by CCSD
VIII Qubitization HDF 425.7 2.5 × 106 4600 4.6 × 1010 εin = 1 mHartree

Qubitization H 1.1 × 104 2.2 × 106 11000 9.3 × 1011 εin = 1 mHartree
Qubitization HCD 4.2 × 104 1.3 × 106 5800 2.1 × 1012 εin = 1 mHartree
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Common Misconceptions about QC Hardware 
• More qubits = better quantum computer


• The “length” of the computation you can run is equally important

• Also, operation error rate needs to reduce as the system size increase, otherwise 

marginal value decreases as you add more qubits 


• Longer coherence time = better quantum computer

• Energy scale is essential to compute the “effective” computation time

• Coherence time / operation time ≈ length of computation


• As long as the quantum computer is “universal” it will be useful for something!

• There are many paths to a useless Quantum Computer


• All computations that are intractable with classical computers are high-value

• Many have very little to no-value
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Application Readiness
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Current Gap Between Hardware and Applications

• What will it take to achieve high-impact 
quantum computing applications?


• Very limited understanding…


• DARPA’s Quantum Benchmarking 
program is at the bleeding edge


• Preliminary 2023 Findings (right) 
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Who will win the Quantum Computing race?

I have no idea!


Everyone has a plausible pitch 
for why their approach is best
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Technology Stage of Quantum Computing Models

Fault-Tolerant

Gate-Based 

Noisy Gate-Based

Noisy Analog QC

Gartner’s Technology Hype Cycle

How long before we 
have a very large and 
useful Fault-Tolerant 
quantum computer?

12 months ago

most folks would say


“10-15 years”


Today it seems much 
sooner (2026-2030)
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Thanks!
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Some Public FTQC Roadmaps

• IBM

• 200 logical qubits by 2029

• 100M Gates


• Infleqtion

• 100 logical qubits by 2028

• 1-100M Gates


• QuEra

• 100 logical qubits by 2026

• Gates?


