Advanced Displays and Techniques for Telepresence

Surgical Consultation Telepresence

Henry Fuchs
UNC Chapel Hill

ARPA-E Telepresence Workshop April 26, 2016 COAUTHORS for papers in this talk:

Young-Woon Cha Rohan Chabra Nate Dierk Mingsong Dou Wil Garrett Gentaro Hirota Kurtis Keller Doug Lanman Mark Livingston David Luebke **Andrew Maimone** Federico Menozzi Etta Pisano, MD Kishore Rathinavel Andrei State Eric Wallen, MD **Greg Welch** Mary Whitton Xubo Yang

Support gratefully acknowledged: CISCO, Microsoft Research, NIH, NVIDIA, NSF Awards IIS-CHS-1423059, HCC-CGV-1319567, II-1405847 ("Seeing the Future: Ubiquitous Computing in EyeGlasses"), and the BeingThere Int'l Research Centre, a collaboration of ETH Zurich, NTU Singapore, UNC Chapel Hill and Singapore National Research Foundation, Media Development Authority, and Interactive Digital Media Program Office.

Video Teleconferencing vs Telepresence

Video Teleconferencing

- Conventional 2D video capture and display
- Single camera, single display at each site is common configuration for Skype, Google Hangout, etc.

Telepresence

- Provides illusion of presence in the remote or combined local&remote space
- Provides proper stereo views from the precise location of the user
- Stereo views change appropriately as user moves
- Provides proper eye contact and eye gaze cues among all the participants

Cisco TelePresence 3000

Three distant rooms combined into a single space with wall-sized 3D displays

Telepresence Component Technologies

- Acquisition (cameras)
- 3D reconstruction
- Communication network
- Viewer viewpoint tracking
- Generation of image(s) for display
- Display presentation

3D Telepresence Component Issues

Acquisition (cameras)

 RGB or depth cameras, number, placement (fixed, moving, head-mounted, anticipating the position of remote users,...)

3D reconstruction

- Combine input from many color+depth cameras
- View the set of 3D color points in space
- Fit surface of polygons around the 3D points
- Enhance polygon surfaces with model-based info (e.g., human skeleton) or time-based integration, light-field info,..

Communication network

Bandwidth, compression-decompression,...

Viewer viewpoint tracking

- Tracked area instrumented or not; indoors, outdoors
- Low latency (30msec,... 100microseconds)

Generation of image(s) for display

Rendering quality, latency, power usage

Display presentation

- Large format: Different stereo image pair for each viewer (require stereo glasses or not)
- Near-eye: eyeglasses form factor, wide field of view

3D reconstruction from ~10 Kinect color+depth cameras (Dou et al, IEEE VR 2014)

Display Alternatives*

Large, fixed:

pro: nothing to wear on the face

(at most, wear sunglasses, like at 3D movies)

con: only see the remote people on far side of the display;

local & remote participants can't be in same shared space

Head-worn:

Virtual Reality:

pro: cheap, immersive

con: cannot see own body, local people and space

Augmented Reality:

pro: see own body and local environment

con: wide field of view just out of reach, clunky

-virtual objects (distant people) cannot occlude real

world, either appear transparent or real world has to be dark

^{*} Only near-term deployable technologies

Large Format 3D Displays: without glasses

Challenge:

Different image to be seen by each viewer emit a different color to each direction

Solution: ~ 100 rear-projectors for a human lifesize display

multi-layer displays:
passive or active barrier displays
compressive, tensor displays
steerable backlight displays

Remaining Challenges: compression artifacts, insufficient switching speed of spatial light modulation displays (LCDs), low light efficiency

Large, Fixed Displays with Shutter Glasses

- Easier than eyeglass-free multiview displays
- Shutter glasses select which user (both eyes) sees a particular sub-frame
 - Like stereo, just 6 subframes instead of 2

- Future: could reduce number of projectors by sacrificing some color resolution
- Future: faster display speeds (micromirrors) will enable less expensive solutions (e.g., 4 user system with 2 projectors)

6 stereo projectors, each assigned permanently to 1 of 6 functions:

1: Left eye Red

2: Left eye Green

3: Left eye Blue

4: Right eye Red

5: Right eye Green

6: Right eye Blue

Each of 6 subframes assigned to one of 6 users (wouldn't work for 7 users)

Beck et al, VR 2013

Polarizer A filter

Polarizer B filter

Fixed Displays vs Near-eye Displays

- With fixed displays, participants (local and remote) cannot all be in the same shared space, sit next to each other,..
- For sharing local space, need displays that users wear, so virtual objects (distant people) can be located anywhere
- Requirements for near-eye displays
 - See local surroundings (own body, table, material) and virtual objects
 - Proper occlusion between real and virtual objects

Near-Eye Display Challenges

- Closed VR headsets probably unacceptable for telepresence
- Open Augmented Reality headsets size ok for narrow Field of View (40 degrees) size bulky for wide FoV (90-100 degrees)
- None have occlusion of real world by virtual, so real world has to be kept dark
 - Not good for telepresence: either local environment is dark or virtual imagery is very bright

Wide FoV Eyeglass AR Display: Maimone et al, Siggraph 2014

Where are We? Which way Forward? 1 of 2

- Now is an opportune time to Telepresence
 - Can ride the VR wave
- Many developing technological pieces,
 - but no collection of them gives a complete solution today for Telepresence
- Similar to personal computer technology ca. 1970
 - Want Alan Kay's Dynabook vision (8 ½" x 11" x 1" with full-color display, touch screen, radio communication to ARPAnet, removable secondary storage)- how to make a Dynabook
 - Challenge: how to get to an effective Telepresence system
- System development:
 - Give up some requirements: cost, bulk, weight
 - For telepresence: use best available AR platform & add temporary enhancements/workarounds
- (Cont.)

Where are We? Which way Forward? 2 of 2

- Technology development: work on each component problem; integrate into rest of development system.
- Fuchs examples:
 - Wide field of view eyeglasses
 - Maimone's pinlight displays: resolution, diffraction, occlusion,...
 - Occlusion: add to current AR display
 - For temporary system development: lighting control in controlled spaces
 - For permanent technological solution: multi-layer light field displays
 - Head-gear Tracking:
 - Go anywhere with accuracy and low latency: GPS, multiple outward-looking rolling-shutter cameras, multiple IMUs

AR without occlusion

AR with occlusion

Magic Leap without occlusion (?) Headset image bright; room is dark

PhaseSpace Smoke