
RTSim™

Solver for models based on Differential

Algebraic Equations (DAEs)

Handles models based on Partial Differential

Equations (PDEs) through spatial discretization

Suitable for nonlinear control systems

Real-time: Ported into an embedded processor,

provides very fast solutions

Low memory needs: Less than 300 kB

Code produced does not contain useful features

of the Computer Aided Engineering (CAE)

environment such as the ones listed for RTSim™

Model changes require a high-cost repetition

of the process

–

–

–

–

–

Small (less than 300 kB)

Fast (ms)

Resides directly on embedded processor

No need for custom code

Speeds up model development effort

Reliable and cost-effective

State-of-the-art features

– Automatic Differentiation

– Sensitivities computed analytically on-the-fly

– Sparse Matrix Techniques

– State-of-the-art DAE Solver

– Variable time step

Treats models as implicitly omni-directional

(as opposed to, say, Simulink®)

Suitable for stiff problems

What is Sendyne
Embedded RTSim™?

Sendyne Embedded RTSim™ Model Solver
Rapid physical model deployment
for real time embedded control

Sendyne Embedded RTSim™ Example: Battery Management
System Adaptive Control

Sendyne
Embedded
RTSim™
Model Solver
Automatic Differentiation

Sensitivities computed

analytically on-the-fly

Sparse Matrix Techniques

State-of-the-art DAE Solver

Variable time step

–

–

–

–

–

–

–

–

–

–

–

–

–

–

 Enter model equations

 Solve them directly

 in Embedded RTSim™

 Limited functionality

 custom code

 Embed code into MCU

 Embedded
 environment

 Enter model equations

 Generate custom code

 automatically or manually

 General purpose CAE
 environment

 Optimize

–

–

.......
/* n= positive integer e= power, S= sum of integers raised in e power*/
int e,n,i,S=0;
/*Input e and n. Control that the inputs are positive numbers*/
printf (\\"Enter the last number (n) of the series\n\\");
scanf (\\"%d\\", &n);
 if (n<=0) /* if n is a negative number*/
 {
 printf (\\"Error. You gave a negative number. Program ends.\n\\");
 return 0;
 }
printf (\\"Input the number to be the power\n\\");
scanf (\\"%d\\", &e);
 if (e<=0) /* if n is a negative number*/
.......

2

2

2

2

2 2 20

d x x
dt
d y y g
dt
x y L

λ

λ

=

= −

= + −

.........

 Battery Model

 State Estimator

 Control algorithms Battery

 + System

vsToday’s practices

For more information:

Contact Sendyne Corp

info@sendyne.com

www.sendyne.com

Simulink® is a registered trademark of MathWorks®Inc. All other trademarks, tradenames, servicemarks are the property of their respective owners.

.......
/* n= positive integer e= power, S= sum of integers raised in e power*/
int e,n,i,S=0;
/*Input e and n. Control that the inputs are positive numbers*/
printf (\\"Enter the last number (n) of the series\n\\");
scanf (\\"%d\\", &n);
 if (n<=0) /* if n is a negative number*/

{
 printf (\\"Error. You gave a negative number. Program ends.\n\\");
 return 0;

}
printf (\\"Input the number to be the power\n\\");
scanf (\\"%d\\", &e);
 if (e<=0) /* if n is a negative number*/
.......

2

2

2

2

2 2 20

d x x
dt
d y y g
dt
x y L

λ

λ

=

= −

= + −

.........

.......
/* n= positive integer e= power, S= sum of integers raised in e power*/
int e,n,i,S=0;
/*Input e and n. Control that the inputs are positive numbers*/
printf (\\"Enter the last number (n) of the series\n\\");
scanf (\\"%d\\", &n);
 if (n<=0) /* if n is a negative number*/

{
 printf (\\"Error. You gave a negative number. Program ends.\n\\");
 return 0;

}
printf (\\"Input the number to be the power\n\\");
scanf (\\"%d\\", &e);
 if (e<=0) /* if n is a negative number*/
.......

2

2

2

2

2 2 20

d x x
dt
d y y g
dt
x y L

λ

λ

=

= −

= + −

.........

 Embedded
 environment

 Less than

 300 kB

