Slick Sheet: Project
Northrop Grumman is developing a contrail prediction and avoidance system to scout optimal altitudes for flight crew that would feature a predictive algorithm and new airborne instrumentation. Northrop Grumman’s radiometric temperature and humidity sensor would measure the environmental conditions above, below, and in front of an aircraft to enable flight crew to proactively respond to regions conducive to long-lived cirrus formation minutes before entering the area.

Slick Sheet: Project
The University of Houston will scale up manufacturing of low-cost rare earth barium copper oxide conductors for high-temperature superconducting (HTS) tape to overcome barriers of implementing HTS in clean energy applications, including low-loss transmission cables, compact nuclear fusion reactors, high-power wind turbine generators, and highly efficient motors and generators.

Slick Sheet: Project
High Temperature Superconductors will increase the production speed and reduce the cost of high-temperature superconducting coated conductor tapes by using a pulsed laser deposition process to support the development of transformational energy technologies including nuclear fusion reactors. By developing tools to expand the area on which the superconducting layers are deposited, the team at High Temperature Superconductors will raise production speeds by five to ten times compared to that of present-day levels while improving the quality and consistency of the materials.

Slick Sheet: Project
Pacific Northwest National Laboratory (PNNL) is studying methods to efficiently extract rare earth elements and platinum group metals from “biological ore”: hyper-accumulating species of marine macroalgae. Extraction methods will also re-utilize chemical extractants and retain the value of the algae for other purposes such as biofuels and other industrial feedstocks, resulting in minimal tailings.

Slick Sheet: Project
Universities Space Research Association is developing a real-time, cloud-based aviation contrail prediction and observation system that would improve airspace operations through new atmospheric data services and ensemble modeling approaches. The system would advance an existing cutting-edge contrail computer model with a novel machine learning approach to produce forecasts of persistent contrail-forming regions.

Slick Sheet: Project
Eva will develop novel devices to build analog processors that could drastically improve the energy efficiency of training complex artificial intelligence (AI) models. Eva’s proposed technology—a new class of nanoprotonic programmable resistors—would reduce the programming voltage of the devices for integration compatibility with standard circuit drivers and overhaul the device structures with an encapsulant to enable monolithic integration. The resulting processors could outperform existing digital AI training hardware solutions by over 240 times.

Slick Sheet: Project
Foundation Alloy Technology Explorations will develop a new class of alloys specifically engineered for powder metallurgy-based processing. These new alloys would be engineered at the atomic level for improved properties and for potential applications in critical reactor components. Foundation Alloy’s integration of new material design with part production could enable rapid delivery times, lower costs, and more consistent part quality.

Slick Sheet: Project
Perseus Materials will develop a new mode of composite manufacturing for wind turbine blades that could rapidly replace vacuum-assisted resin transfer molding as the dominant blade manufacturing process. Perseus’s unique additive manufacturing method—known as variable cross-sectional molding—could significantly reduce labor costs, cycle times, and factory footprints for blade manufacturers at the same output levels.

Slick Sheet: Project
GaNify will develop a unique power switch for gyrotron modulators in nuclear fusion systems that could switch 50-kV/1-A in less than a microsecond without the need to stack multiple switches in series. Their design would significantly reduce the complexity and shorten the modulation voltage rise time, effectively pushing the voltage limit of solid-state power switches toward the high voltage regime.

Slick Sheet: Project
Calion Technologies will develop an air source heat pump steam generator that could seamlessly replace natural gas boilers for industrial processes and introduce heat pumps to a new swath of customers. Calion Technologies’ unique device would harness ionocaloric heat pumping technology to generate steam at very high temperatures compared with current heat pumps and accelerate the decarbonization of industrial heating, which accounts for 9% U.S. greenhouse gas emissions.