Slick Sheet: Project
The University of Colorado, Boulder (CU-Boulder) proposes to develop a capacitive wireless power transfer (WPT) architecture to dynamically charge EVs. Dynamic charging poses serious technical challenges. Transmitters must be connected to the plates in the road while rectifiers and battery charging is integrated with the plates in the vehicle. While energy transfer through the air is efficient, the large distance between the embedded vehicle plates and the road results in a weaker pairing between the two.

Slick Sheet: Project
Saint-Gobain Ceramics & Plastics is conducting early-stage research to extend operating temperatures of industrial ceramics in steam-containing atmospheres up to 1,500 °C. Materials that are able to adequately withstand these punishing conditions are needed to create durable solar fuel reactors. The most attractive material based on high-temperature strength and thermal shock resistance is sintered (the process of compacting solid material without melting it) silicon carbide (SiC).

Slick Sheet: Project
Qromis will develop a new type of gallium nitride (GaN) transistor, called a lateral junction field effect transistor (LJFET) and investigate its reliability compared to other types of transistors, such as SiC junction field effect transistors (JFETs) and GaN-based high electron mobility transistors (HEMTs). Qromis' innovative LJFET design distributes and places the peak electric field away from the surface, eliminating a key point of failure that has plagued GaN HEMT devices and prevented them from achieving widespread use.

Slick Sheet: Project
Northeastern University, in partnership with the Ames Laboratory, will evaluate a range of new magnetocaloric compounds (AlT2X2) for potential application in room-temperature magnetic cooling. Magnetic refrigeration is an environmentally friendly alternative to conventional vapor-compression cooling technology. The magnetocaloric effect is triggered by application and removal of an applied magnetic field—adjusting the magnetic field translates into an adjustment in the temperature of the material.

Slick Sheet: Project
Johns Hopkins University will develop and assess components of a self-powered system to convert methane (the main component in natural gas) into carbon fiber. Methane can be separated into carbon and hydrogen, or burned for energy. The team will develop processes to use methane both to power the system and serve as carbon feedstock in a four stage system. First, methane is decomposed into hydrogen and carbon, and combined into a carbon/metal aggregate. Second, the carbon/metal aggregate is melted, producing a liquid melt containing carbon dissolved within it.

Slick Sheet: Project
The Grid Logic team is adapting a form of vapor deposition technology to demonstrate a new approach to creating powerful hybrid magnets. This “physical vapor deposition particle encapsulation technology” utilizes an inert atmosphere chamber, which allows for precisely controlled and reproducible pressure, gas flow, and fluidization conditions for a powder vessel. The team will use this specialized chamber to fabricate nanostructured exchange-spring magnets, which require careful control of material dimension and composition.

Slick Sheet: Project
The California Institute of Technology (Caltech) team is using first-principles reasoning (i.e. a mode of examination that begins with the most basic physical principles related to an issue and “builds up” from there) and advanced computational modeling to ascertain the underlying mechanisms that cause acoustic waves to affect catalytic reaction pathways. The team will first focus their efforts on two types of reactions for which there is strong experimental evidence that acoustic waves can enhance catalytic activity: Carbon Monoxide (CO) oxidation, and Ethanol decomposition.

Slick Sheet: Project
Columbia University will develop a new platform for generating multiple simultaneous optical channels (wavelengths) with low power dissipation, thereby enabling optical interconnects for low power computing. Optical interconnect links communicate using optical fibers that carry light. Wavelength-division multiplexing (WDM) is a technology that combines a number of optical carrier signals on a single optical fiber by using different wavelengths. This technique enables bidirectional communications over strands of fiber, dramatically increasing capacity.

Slick Sheet: Project
The Columbia University team is developing a proof-of-concept solid-state solution to generate electricity from high-temperature waste heat (~900 K) using thermal radiation between a hot object placed in extreme proximity (<100 nm) to a cooler photovoltaic (PV) cell. In this geometry, thermal radiation can be engineered such that its spectrum is quasi-monochromatic and aligned with the PV cell’s bandgap frequency.

Slick Sheet: Project
Ricardo will develop a detailed cost model for 10 key automotive components (e.g. chassis, powertrain, controls, etc.), analyzing the investment barriers at production volumes. Prior studies of innovative manufacturing processes and lightweight materials have used differing cost analysis assumptions, which makes comparison of these individual studies difficult. The backbone of the project will be a detailed economic model built on a set of common assumptions that will allow the root cause of cost barriers to be identified.