Slick Sheet: Project
The University of Texas at Arlington and collaborators will develop a novel hybrid cooling technology to address the growing need for advanced thermal management solutions for high-power data centers.

Slick Sheet: Project
Intel Federal will develop ultra-low-thermal resistance, coral-shaped immersion cooling heat sinks integrated with a 3D vapor chamber cavity for high-power devices. Intel’s design would address the challenge of adapting two-phase immersion cooling by optimizing 3D vapor chambers to spread the heat more effectively. This is paired with innovative boiling enhancement coatings to reduce thermal resistance by promoting high nucleation site density.

Slick Sheet: Project
As part of their Category A effort, HP will work with partners to develop an aggressive liquid cooling solution that reduces the need for thermal interface material and the number of thermal interfaces between high-power CPUs/GPUs and the coolant, thereby dramatically lowering the package thermal resistance. The proposed approach leverages HP’s inkjet microfluidics platform and relies on first coupling silicon microchannels to a device’s surface, and then by embedding microfluidics deeper into the device as a future step.

Slick Sheet: Project
JetCool will develop a microconvective cooling technology that combines and optimizes two distinct cooling approaches to provide the highest levels of energy efficiency in data centers. JetCool’s micro-convective cooling modules lower CPU temperatures, reducing leakage current and resulting in power savings of 8-10% while an in-server radiator eliminates the need for server-dedicated air cooling in the data center to provide significant additional energy savings.

Slick Sheet: Project
The University of Missouri will develop a hybrid mechanical-capillary-drive two-phase loop that could serve as an ideal cooling solution for data centers. The proposed technology offers numerous advantages over existing phase-change processes such as flow boiling and condensation, including dual-mode operation, low thermal resistance, high heat flux, low pumping power consumption, high power density, reliable operation, and a fully scalable design.

Slick Sheet: Project
The National Renewable Energy Laboratory (NREL), Sandia National Laboratories, and the Georgia Institute of Technology will develop testing protocols to evaluate the cooling technologies developed by COOLERCHIPS projects in real data center operating conditions. The scale will range from the component level to the rack level and all the way up to full edge data centers.

Slick Sheet: Project
As part of a Category A project, HRL Laboratories will develop a novel data center thermal management system with low thermal resistance and greater energy efficiency to reduce power consumption for the next generation of data center servers. HRL’s system utilizes aligned graphite micro-fins and additively manufactured flow manifolds to overcome performance limitations common to existing cooling blocks and provide unprecedented cooling for current and future processors.

Slick Sheet: Project
Nvidia will develop a novel modular datacenter with an innovative cooling system that combines direct-to-chip, pumped two-phase and single-phase immersion in a rack manifold with built-in pumps and a liquid-vapor separator. The design cools chips with a two-phase cold plate, while the rest of the server components with lower power density will be submerged inside a hermetically sealed immersion sled with the servers cooled using green refrigerants for the twophase cooling and dielectric fluid for the immersion.

Slick Sheet: Project
The University of California, Davis, will develop a suite of holistic thermal management solutions for modular datacenters used for edge computing. Their design innovations include efficient heat extraction from CPU and GPU chips with a liquid cooled loop and dissipation of this heat to the ambient by use of high-efficiency, low-cost heat exchangers. Auxiliary electronics in the server boards would be cooled with a secondary loop that rejects heat radiatively to the atmosphere.

Slick Sheet: Project
The University of Maryland will develop an integrated decision support software tool for the design of next-generation data centers that seamlessly links the existing open-source software for modeling reliability, energy, carbon footprint, and cost with an innovative co-simulation framework. This tool will permit data center designers to develop transformational and disruptive design advances compared to existing state-of-the-art technologies.