Slick Sheet: Project
The University of Texas, Austin, will conduct an in-situ injection of CO2 dissolved in water to permanently sequester CO2 via carbon-negative reactions (carbon mineralization), chemically fracture the rock via reaction-driven cracking before mining to reduce extraction and comminution energy by at least 50%, replace the CO2-reactive rock waste with carbonate to reduce energy needed for separation, improve concentrate grade, and increase ore recovery, and expand the lifespan of the mine as a CO2 sink once the ore is exhausted.

Slick Sheet: Project
Stanford University will explore a technical solution based on LENR-active nanoparticles and gaseous deuterium. The team seeks to alleviate critical impediments to test the hypothesis that LENR-active sites in metal nanoparticles can be created through exposure to deuterium gas.

Slick Sheet: Project
Energetics Technology Center will build upon past successes with co-deposition experiments using palladium, lithium, and heavy water together to create an environment in which LENR can occur. These electrolysis experiments decrease the distance from the cathode (location of LENR) to an electronic detector capable of detecting nuclear reaction products to give these experiments the best chance at reliably detecting nuclear reactions, if they are present.

Slick Sheet: Project
Virginia Polytechnic Institute and State University (Virginia Tech) will develop an innovative carbon mineralization/metal extraction technology (CMME) that enables the recovery of energy-relevant elements during direct and indirect carbon mineralization processes. Virginia Tech will introduce an organic phase during the direct carbon mineralization process and in the mineral dissolution step of indirect carbon mineralization process. Energy-relevant elements are purified and separated through advanced separation technologies.

Slick Sheet: Project
Boeing Research & Technology (BR&T) will develop a multidisciplinary topology optimization (MDTO) algorithm that couples fluid dynamics, heat transfer, and structural analysis to design, manufacture via additive manufacturing techniques, and demonstrate a high-performance, extreme environment heat exchanger (EEHX) capable of operating at up to 900°C with a 17 MPa pressure differential with supercritical carbon dioxide.

Slick Sheet: Project
The Lawrence Berkeley National Laboratory (LBNL) team proposes to probe for LENR at external excitation energies below 500 eV, systematically varying materials and conditions while monitoring nuclear event rates with a suite of diagnostics. The team will draw from knowledge based on previous work using higher energy ion beams as an external excitation source for LENR on metal hydrides electrochemically loaded with deuterium.

Slick Sheet: Project
The University of Michigan proposes to systematically evaluate claims of excess heat generation during deuteration and correlate it to nuclear and chemical reaction products. The team plans to combine scintillation-based neutron and gamma ray detectors, mass spectrometers, a calorimeter capable of performing microwatt-resolution measurements of heat generation, and ab-initio computational approaches. The proposed research will experimentally and theoretically explore the origin and mechanisms of excess heat generation and LENR.

Slick Sheet: Project
Idaho National Laboratory (INL) will advance state-of-the-art of integrated reservoir stimulation and sensing technology for enhanced in-situ mining (ISM) and carbon mineralization. This project will use disruptive electro-hydraulic fracturing to increase permeability of intact ore bodies, expanding the accessibility of CO2-charged fluid to carbonation-target minerals and dispersed energy-relevant minerals.

Slick Sheet: Project
Texas A&M will develop novel resilient net-carbon-negative building designs for residential and potentially commercial applications via large-scale 3D printing using hempcrete, a lightweight material made of the hemp plant’s woody core mixed with a lime-based binder.

Slick Sheet: Project
Michigan Technological University (MTU) will achieve a decrease of 10 wt% CO2 equivalent per tonne of ore processed compared with current methods for primary nickel extraction by a) storing CO2 in CO2-reactive minerals and b) recovering an additional 80% of energy-relevant minerals from nickel-bearing minerals in mine tailings. MTU will achieve these two major goals by developing accelerated carbon mineralization and carbon negative metal extraction technologies.