Slick Sheet: Project
Cornell University will develop an occupant monitoring system to enable more efficient control of HVAC systems in commercial buildings. The system is based on a combination of "active" radio frequency identification (RFID) readers and "passive" tags. Instead of requiring occupants to wear tags, the tags, as coordinated landmarks, will be distributed around a commercial area to enable an accurate occupancy count.

Slick Sheet: Project
Boston University (BU) will develop an occupancy sensing system to estimate the number of people in commercial spaces and monitor how this number changes over time. Their Computational Occupancy Sensing SYstem (COSSY) will be designed to deliver robust performance by combining data from off-the-shelf sensors and cameras. Data streams will be interpreted by advanced detection algorithms to provide an occupancy estimate. All processing will be performed locally to mitigate security concerns. The system will be designed to accommodate various room sizes and geometries.

Slick Sheet: Project
Syracuse University will develop a sensor unit to detect occupancy in residential homes called MicroCam. The MicroCam system will be equipped with a very low-resolution camera sensor, a low-resolution infrared array sensor, a microphone, and a low-power embedded processor. These tools allow the system to measure shape/texture from static images, motion from video, and audio changes from the microphone input. The combination of these modalities can reduce error, since any one modality in isolation may be prone to missed detections or high false alarm rates.

Slick Sheet: Project
Michigan State University (MSU) will develop a comprehensive testing protocol and simulation tool to evaluate the reliability, energy savings potential, and ease of commissioning of occupancy sensor system technologies for commercial and residential buildings. This will include controlled laboratory and field testing considering several model interior configurations and diverse residential and commercial building types. Ground truth occupancy values will be established from realistic occupancy scenarios.

Slick Sheet: Project
3M will develop a film that passively radiates heat away from an engineered surface for use in cooling applications. Using a unique, weather resistant polymer composition, the team will improve the film’s ability to reflect sunlight and ultraviolet (UV) light, thus boosting performance while also increasing its lifespan. This film builds upon radiative cooling technology developed in prior ARPA-E awards to Stanford University and SkyCool Systems, a partner in this project.

Slick Sheet: Project
Colorado State University (CSU) and its partners are developing an inexpensive, polymer-based, energy-saving material that can be applied to windows as a retrofit. The team will develop a coating consisting of polymers that can rapidly self-assemble into orderly layers that will reflect infrared wavelengths but pass visible light. As such, the coating will help reduce building cooling requirements and energy use without darkening the room.

Slick Sheet: Project
The Mackinac Technology Company will develop an innovative, cost effective, retrofit window insulation system that will significantly reduce heat losses. The insulation system will use a durable window film that is highly transparent to visible light (more than 90% of light can pass through), but reflects thermal radiation back into the room and reduces heat loss in winter. The film will be microporous and breathable to allow air pressures to balance across the window system. The film will be bonded to a rigid frame that can be retrofitted to an existing single-pane glass window.

Slick Sheet: Project
The University of California, Santa Barbara (UCSB) will develop a gallium nitride (GaN) laser-based white light emitter with no efficiency droop at high current densities. The team's solution will address the efficiency and cost limitations of LEDs. Laser diodes do not suffer efficiency droop at high current densities, and this allows for the design of lamps using a single, small, light-emitting chip operating at high current densities.

Slick Sheet: Project
Case Western Reserve University will develop a data analytics approach to building-efficiency diagnosis and prognostics. Their tool, called EDIFES (Energy Diagnostics Investigator for Efficiency Savings), will not require complex or expensive computational simulation, physical audits, or building automation systems. Instead, the tool will map a building's energy signature through a rigorous analysis of multiple datastreams.

Slick Sheet: Project
Colorado State University (CSU) will work with BASF and Cypris Materials to accelerate the technology first developed under a 2015 ARPA‐E OPEN award. They will transition the developed coating into an industrially scalable, sprayable process to retrofit energy inefficient windows with a heat-reflective, visibly transparent film. Under the original award, nanostructured coatings were shown to greatly improve the efficiency of single‐pane windows by lowering solar heat gain.