Slick Sheet: Project
The University of California, Davis, will develop a suite of holistic thermal management solutions for modular datacenters used for edge computing. Their design innovations include efficient heat extraction from CPU and GPU chips with a liquid cooled loop and dissipation of this heat to the ambient by use of high-efficiency, low-cost heat exchangers. Auxiliary electronics in the server boards would be cooled with a secondary loop that rejects heat radiatively to the atmosphere.

Slick Sheet: Project
The University of Maryland will develop an integrated decision support software tool for the design of next-generation data centers that seamlessly links the existing open-source software for modeling reliability, energy, carbon footprint, and cost with an innovative co-simulation framework. This tool will permit data center designers to develop transformational and disruptive design advances compared to existing state-of-the-art technologies.

Press Releases
 The U.S. Department of Energy (DOE) today announced $40 million in funding for 15 projects that will develop high-performance, energy efficient cooling solutions for data centers.

Slick Sheet: Project
Texas Tech will develop boron nitride (BN) fast neutron detectors (FND) for energies up to tens of mega-electron volts based on their recent development of hexagonal BN semiconductor thermal neutron detectors with record efficiencies of >59%. BN FNDs have unique advantages, including compact size, high gamma rejection ratio, low voltage operation, and low fabrication and maintenance costs. These neutron detectors can operate in high temperatures and harsh environments and detect thermal and fast neutrons simultaneously.

Slick Sheet: Project
Cornell University seeks to develop a breakthrough wireless charging system for stationary and dynamic charging of EVs that will drastically reduce the need for expensive and bulky on-board batteries, enable unlimited range, accelerate EV penetration, and reduce U.S. energy consumption. The new system will leverage charging range extension, field focusing, and machine learning-based optimization to (1) reduce interference from fringing fields by 10x, (2) increase energy transfer by 10x, and (3) reduce power pulsations by 10x compared with state-of-the-art solutions.

Slick Sheet: Project
GaNify seeks to develop 10-kV/10-A power diode prototypes for medium-voltage power electronics systems. Medium-voltage power switches are needed for a range of power electronics. GaNify’s medium-voltage power diodes are based on a novel charge-balanced GaN super-heterojunction technology, which has already demonstrated ~2X higher effective electric field, scalability to over 10 kV, and ~3X lower on-resistance over the existing wide bandgap semiconductor technology.

Slick Sheet: Project
IBM will develop an energy-efficient two-phase cooling system for data center servers to significantly reduce energy and water usage. The system will improve data center energy efficiency over traditionally air-cooled data centers that consume 25-35% of the total data center energy usage. The proposed system will flow non-conductive, dielectric liquid coolant within a server by placing heat extracting cold plates in direct contact with high power components (CPUs, GPUs, etc.), reducing the thermal resistance between the chip and coolant and allowing above ambient coolant temperature.

Slick Sheet: Project
HRL Laboratories’ surface laser architected magnets (SLAM) approach can reduce the use of HRE by locally optimizing the crystallographic orientation of the microstructure on the magnet’s surface. Using laser-based post-processing methods, SLAM magnetically hardens the weakest points on a NdFeB magnet surface against demagnetization, which enables higher torque and more energy efficient motors. By increasing demagnetization resistance, the extent of usable magnetic energy produced at elevated operating temperatures can be increased up to 2X in permanent magnets.

Slick Sheet: Project
Impact Cooling will develop a novel data center cooling solution that can cool server equipment efficiently using only air. Data centers are predicted to consume 8% of global electricity by 2030; approximately one-third of that energy is used for cooling server equipment rather than actual computations. State-of-the-art data center cooling has come from better separation of hot and cold air. State-of-the-art air-cooled data centers use air at ambient atmospheric pressure to cool the server equipment.

Slick Sheet: Project
The University of Illinois at Urbana-Champaign (UIUC) will pursue novel cubic gallium nitride-based green LEDs that, when combined with blue and red LEDs, will enable more efficient white light SSL without the use of down-converting phosphors. This project will close the “green gap” in the visible spectrum through an innovative green LED technology and create new opportunities in mainstream SSL (e.g., general lighting) and advanced SSL (e.g., connected smart lighting, visible light communication, horticulture, and medicine).