Slick Sheet: Project
West Virginia University seeks to commercialize alloys and manufacturing processes to improve the overall safety, energy efficiency, and environmental performance of air travel and electricity generation. The team will develop a new class of ultra-high temperature refractory complex concentrated alloys-based composites (RCCC) for high temperature applications such as combustion turbines used in the aerospace and energy industries. The approach is based on a transformative “high-entropy” strategy.

Slick Sheet: Project
More information on this project is coming soon!

Slick Sheet: Project
Rutgers University (RU) aims to produce concrete from incinerator ash and concrete rubble (CR). RU will use its proprietary low-cost technology to create a low carbon footprint concrete. Assuming only electricity for crushing and milling, CR contributes a 5% carbon footprint to an adaptive cement that can be cured one of two different ways. Curing with CO2 will create a -5% carbon-negative carbonate-cement-concrete. Curing with water will create a +6% carbon footprint hydraulic concrete. Both sustainable technologies exact a reduction of 90+% for CO2 emissions and 100% for fossil fuel use.

Slick Sheet: Project
QuesTek Innovations will apply computational materials design, additive manufacturing (AM), coating technology, and turbine design/manufacturing to develop a comprehensive solution for a next-generation turbine blade alloy and coating system capable of sustained operation at 1300°C.

Slick Sheet: Project
The demand for lithium, a critical component of lithium-ion batteries, is expected to soar over the coming decades. As favorable sources are depleted, a new source must be tapped: recycling end-of-life lithium-ion batteries. SiTration is developing a new type of filtration membrane that is well suited to selectively extract lithium in the existing battery recycling process flow. Today’s commercial membranes are either incompatible with the harsh chemical environments of battery recycling or not selective enough to extract lithium from a complex solution.

Slick Sheet: Project
InventWood proposes to develop and manufacture lightweight 3D wood corrugated honeycomb structures to replace metal counterparts. Compared with widely used aluminum, 3D wood has similar mechanical strength, possesses one-third the density and one-fourteenth the cost, and reduces CO2 emissions by 90% in its manufacture.

Slick Sheet: Project
GE Research has proposed transformational material solutions to potentially enable a gas turbine blade alloy-coating system capable of operating at a turbine inlet temperature of 1800 °C for more than 30,000 hours.

Slick Sheet: Project
Pennsylvania State University (PSU) will develop an integrated computational and experimental framework for the design and manufacturing of ULtrahigh TEmperature Refractory Alloys (ULTERAs). PSU will generate alloy property data through high-throughput computational and machine learning models; design ULTERAs through a neural network inverse design approach; manufacture the designed alloys utilizing field assisted sintering technology and/or additive manufacturing; and demonstrate the performance through systematic characterization in collaboration with industry.

Slick Sheet: Project
A turbine engine's combustion environment can rapidly degrade high temperature alloys, which means they must be coated. This coating must be able to expand with the alloy so it adheres during temperature cycling, prevent combustion gases from permeating to the underlying alloy, and possess ultra-low thermal conductivity to protect the alloy from high surface temperatures. The University of Virginia will develop a novel coating for high temperature alloys that enables both a dramatic increase in upper use temperature for turbine engine blades and increased engine efficiency.

Slick Sheet: Project
Current Ni-based alloys used in turbine blade applications are operating at 1100°C, which is approximately 90% of their melting temperatures. Refractory alloys, such as niobium (Nb) alloys, can withstand higher temperatures.