Slick Sheet: Project
GE Research has proposed transformational material solutions to potentially enable a gas turbine blade alloy-coating system capable of operating at a turbine inlet temperature of 1800 °C for more than 30,000 hours.

Slick Sheet: Project
Pennsylvania State University (PSU) will develop an integrated computational and experimental framework for the design and manufacturing of ULtrahigh TEmperature Refractory Alloys (ULTERAs). PSU will generate alloy property data through high-throughput computational and machine learning models; design ULTERAs through a neural network inverse design approach; manufacture the designed alloys utilizing field assisted sintering technology and/or additive manufacturing; and demonstrate the performance through systematic characterization in collaboration with industry.

Slick Sheet: Project
A turbine engine's combustion environment can rapidly degrade high temperature alloys, which means they must be coated. This coating must be able to expand with the alloy so it adheres during temperature cycling, prevent combustion gases from permeating to the underlying alloy, and possess ultra-low thermal conductivity to protect the alloy from high surface temperatures. The University of Virginia will develop a novel coating for high temperature alloys that enables both a dramatic increase in upper use temperature for turbine engine blades and increased engine efficiency.

Slick Sheet: Project
Current Ni-based alloys used in turbine blade applications are operating at 1100°C, which is approximately 90% of their melting temperatures. Refractory alloys, such as niobium (Nb) alloys, can withstand higher temperatures.

Slick Sheet: Project
Thermal barrier coatings (TBCs) on turbine blades are designed to protect the blade from reaching temperatures higher than the operational capability of the base metal. Pacific Northwest National Laboratory aims to develop a new type of TBC that performs dual functions. The coating will act as a barrier to conventional heat transfer and have ability to alter the wavelength of light radiated from the hot turbine blade surface. This normally wasted energy will be absorbed in the turbine exhaust where it can then produce additional electrical power or thrust.

Slick Sheet: Project
The National Energy Technology Laboratory (NETL) will develop lightweight, cost-effective, precipitation-strengthened refractory high entropy alloys (RHEAs) for additive manufacturing. The advantage is an alloy with all phases in thermodynamic equilibrium, promoting high microstructural stability. The alloys will be comprised of a ductile high entropy solid solution matrix strengthened by fine precipitates of the high entropy carbides. NETL will use high throughput, multi-scale computer modeling, and machine learning to identify novel alloys within the large compositional space.

Slick Sheet: Project
Current alloys used in gas turbines operate at about 90% of their melting temperature, which sets a limit on achieving higher temperatures. Refractory metal alloys (RMA) have the capability to enable continuous operation at 1300°C and with compatible coatings along with cooling systems to allow for gas inlet temperatures to reach 1800°C. The high RMA melting temperatures present challenges for traditional manufacturing methods, however.

Slick Sheet: Project
Micro Nano Technologies (MNT) proposes a proof-of-concept, thermally driven industrial semi-open absorption heat pump drying system to address current drying technology limitations and increase energy efficiency by 40% over state of the art. Because it is heat source flexible, this efficient, compact, and cost-effective drying system will permit the use of the lowest cost fuel per location, reducing operating costs, saving energy, and lowering greenhouse gas emissions at the grid/system level.

Slick Sheet: Project
Cement is responsible for 8% of global CO2 emissions. Currently, the only economical way to make Portland cement’s key ingredient, lime, is by thermally decomposing limestone. This reaction contributes ~75% of cement’s emissions. Sublime Systems (Sublime) will build an electrochemical system to produce lime using off-peak renewable electricity and calcium sources that do not release CO2. The lime produced may possess exceptional purity, consistency, and reactivity, enabling next-generation low-carbon cements.

Slick Sheet: Project
Rare earth metals (REMs) are crucial for a domestic clean energy future, as they are key to several emerging technologies from wind turbines to electric vehicles. Currently, high energy requirements, hazardous waste generation, and the associated costs inhibit domestic commercial viability of rare earth separation and metallization processes, so rare earth material is sent to China for processing. Phoenix Tailings (PT) has developed novel techniques to separate rare earth oxides (REOs) without the use of hazardous chemicals and reduce them to REMs using 35-45% less energy.