Slick Sheet: Project
Rutgers University, Lawrence Livermore National Laboratory, and the University of Arizona will develop a new hardening method for C3 to address thickness. C3 synthesis currently relies on externally-introduced carbon dioxide for solidification. This program will use microbes mixed into the C3 prior to curing to produce carbon dioxide internally for solidification. This microbial-cured C3 is expected to last longer than OPC at the same thickness, which will reduce the need for concrete repair and replacement.

Slick Sheet: Project
The University of Virginia (U.Va.), in collaboration with C-Crete Technologies, is developing a new approach for making cement by leveraging the ways in which certain mineral silicates react with carbon dioxide and water. These reactions produce mineral phases that are much stronger and more stable than commercial cements, thereby reducing CO2 emissions and energy use over time. Chemically, the products of these reactions share more in common with ancient Roman cements than they do with OPC.

Slick Sheet: Project
LBNL will use advanced microfabrication technology to build and scale low-cost, compact, higher-power multi-beam ion accelerators. These accelerators will be able to increase the ion current up to 100 times, helping to enable a new learning curve for compact accelerator technology. MEMS (micro-electro mechanical systems) technology enables massively parallel, low-cost batch fabrication of ion beam accelerators. The team proposes to scale ion accelerators based on MEMS to higher beam power and pack hundreds to thousands of ion beamlets on silicon wafers.

Slick Sheet: Project
Via Separations will work to develop a membrane platform made from highly robust sheets of graphene-oxide, a material known for its versatility, mechanical strength and relative thermal stability. These sheets will be tailored for specific chemical separation applications to replace conventional, energy-intensive industrial chemical separation processes. Through novelchemistries and innovative system-level intgeration, the proposed membrane platform promises a tunable molecular filtration capability and is highly resistant to chemical degradation.

Slick Sheet: Project
The University of Wisconsin’s integrated toolset seeks to expedite molten salt materials development for technology by two orders of magnitude, compared with current methods. The team will combine advances in additive manufacturing, in-place testing for materials/salt compatibility, new molten salt-resistant mini-electrode designs, and machine learning algorithms to optimize and accelerate identification of molten salt corrosion-resistant materials. Those materials can be used in energy applications including molten salt nuclear reactors, concentrated solar plants, and thermal storage.

Slick Sheet: Project
The Massachusetts Institute of Technology (MIT) will lead a team including Georgia Tech, Louisiana Tech, and the Idaho National Lab in developing multimetallic layered composites (MMLCs) for advanced nuclear reactors and assessing how they will improve reactor performance. Rather than seeking complex alloys that offer exceptional mechanical properties or corrosion resistance at unacceptable cost, this team will develop materials with functionally graded layers, each with a specific function. The team will seek general design principles and engineer specific MMLC embodiments.

Slick Sheet: Project
This CarbonHouse project seeks to validate that carbon derived from methane pyrolysis can be used as both structural and non-structural building materials. Carbon composites already offer an alternative material paradigm for large, lightweight, high-performance structural uses such as boats and aircraft. CarbonHouse targets gas-pyrolysis production of carbon nanotube (CNT) threads and sheets, with hydrogen co-generated as a supplemental high-energy fuel, which would offer an essentially benign new building logic if it can be managed economically and at vast scale.

Slick Sheet: Project
Neuvokas Corporation will develop an energy-efficient CBF manufacturing process. The project will focus delivering a filament-forming extrusion bushing capable of supporting the production of low-cost, high-quality CBF at scale. Using CBF instead of steel to reinforce concrete can reduce capital expenses, greenhouse gases, and operating expenses, and increase concrete service life and time to major maintenance by more than 30 years, saving greater than 0.5 quad (146,535,500,000 kWh) of energy per year.

Slick Sheet: Project
The Colorado School of Mines will develop a more efficient method for both the conversion of hydrogen and nitrogen to ammonia and the generation of high purity hydrogen from ammonia for fuel cell fueling stations. Composed of 17.6% hydrogen by mass, ammonia also has potential as a hydrogen carrier and carbon-free fuel. The team will develop a new technology to generate fuel cell-quality hydrogen from ammonia using a membrane based reactor.

Slick Sheet: Project
INFINIUM will convert low-grade magnesium scrap into material of sufficient purity for motor vehicle components by a novel high-efficiency process using less than 1 kWh/kg magnesium product. Other magnesium purification technologies such as distillation and electrorefining use 5-10 kWh/kg, and primary production uses 40-100 kWh/kg. This is also a high-speed continuous process, with much lower labor and capital costs than other batch purification technologies.