Slick Sheet: Project
The drive for higher fuel efficiency and higher core power of gas turbines used in electric power generation and aircraft propulsion requires higher peak operation temperatures in the hottest sections. Current state-of-the-art refractory metal alloys (RMAs), although highly resistant to heat and wear, tend to oxidize in the gas turbine environment.

Slick Sheet: Project
Raytheon Technologies Research Center (RTRC) aims to design and validate the manufacturability and mechanical properties of a new hot section turbine alloy. To achieve higher efficiency turbine operation, RTRC will use additive manufacturing (AM) to produce test coupons (specimens) and potentially a representative turbine blade using a high entropy alloy (HEA) enhanced with oxide dispersion strengthening (ODS) particles.

Slick Sheet: Project
Massachusetts Institute of Technology will develop a new additive manufacturing (AM) process, capable of producing refractory composite materials for use in high-temperature, oxidation-resistant turbine blades and other demanding energy-conversion applications. The AM process will incorporate hardware and software to establish uniform, high-quality refractory materials that are traditionally prone to micro-cracking and oxidation during AM, thereby establishing the required mechanical properties and oxidation resistance of a target alloy.

Slick Sheet: Project
The University of Utah will use physical metallurgy principles and artificial intelligence to identify the chemistry of new niobium (Nb)-based refractory alloys to ensure they have excellent high-temperature properties without being brittle at low temperatures. The artificial intelligence approach will discover promising compositions for the new alloys based on existing knowledge of simple alloys. The computational materials models will be used to predict the proper processing conditions for the material chemistries.

Slick Sheet: Project
The proposed project will develop a reductive bioleaching process, using bacteria to recover manganese from low-grade U.S. ores. Manganese is key to several common battery technologies, with no substitutes in its major applications. It has not been mined in the US since the 1970s. The mining technology is a major departure from conventional manganese mining because it allows manganese extraction without significant environmental disturbance or the use of toxic chemicals.

Slick Sheet: Project
Cornell University will use advanced genomics, synthetic biology and microfluidic laboratory evolution devices to engineer two sets of exotic microbes to (1) extract REE from ores, spent cracking catalysts, coal ash and electronic waste, and (2) purify REE into single element batches. These two sets of engineered organisms will enable high-efficiency, high-selectivity extraction of REE from ore and end-of-life feedstocks, and purification of mixed REE into isolated element solutions, all under benign conditions without the need of harsh solvents and high temperatures.

Slick Sheet: Project
Tufts University will develop “living filter” technology to continuously recover and sort critical materials from electronic waste (E-waste) streams. The goal is improved throughput, specificity, facile recovery/re-utilization, and reduced material/energy consumption. The team aims to develop genetically-encoded bio-membranes capable of specific material enrichment that is environmentally safe. In addition, it will develop microorganism-encapsulated 3D matrices to continuously reduce and collect noble metals.

Slick Sheet: Project
Columbia University will develop a novel hydrometallurgical platform that will exploit the electrochemical reduction of copper ores followed by biological leaching of sulfide minerals to recover copper metal. The team’s new platform technology will enable the processing of domestic low-grade copper concentrates with high pyrite concentrations. This will reduce the outsourcing of copper processing to overseas smelters and enable new domestic sources of low-grade copper concentrate to be processed economically.

Slick Sheet: Project
The University of California Berkeley will develop a highly selective, environmentally friendly bacterial platform to recover rare earth elements (REEs) from complex electronic waste (E-waste) streams. Feedstocks range from simple (magnet shavings) to complex matrix (printed circuit board recycling waste and used mobile devices). The team will engineer a single bacterial species that acquires REEs from solid feedstocks and converts them to REE minerals at a neutral pH without harsh acids or organic solvents.

Slick Sheet: Project
The Boeing Company will develop a compact, extreme environment heat exchanger (EEHX) for application in supercritical carbon dioxide electric power generation cycles for hypersonic aircraft and land-based distributed power generation. Their metallic heat exchanger will be capable of operation at temperatures and pressures in excess of 1000°C (1832°F) and 80 bar (1160 psi), respectively.