Slick Sheet: Project
Develop a means to combat the damage that neutron exposure causes to concrete used to house nuclear reactors. The project will explore novel additives incorporating boron and will determine whether or not, when bombarded with neutron radiation, these can produce lithium that improves the concrete’s strength and extends its lifetime.

Slick Sheet: Project
Develop a novel ductile EDC that is resistant to chemical attacks and possesses built-in crack width control not feasible with current concrete. This new concrete is targeted to meet everyday construction requirements and have tensile resistance that dramatically enables efficient additive manufacturing and the construction of resilient energy facilities.

Slick Sheet: Project
Brimstone Energy is advancing three next-generation reactor technologies related to fertilizer and cement production. These processes could potentially produce 0.5 quads/year of clean H2 and reduce U.S. energy consumption by 0.55 quads/year, carbon dioxide (CO2) emissions by 200 megatons/year, and industrial expenditures by $4.8 billion/year across the cement, hydrogen, and fertilizer industries.

Slick Sheet: Project
Develop next generation cementitious coating materials to extend the lifetime of key infrastructures subject to extreme conditions such as nuclear power plants. Strategically couple emerging 2D materials technology with lamellar structure of low-CO2 cement to impart greater synergy.

Slick Sheet: Project
Develop a scalable process to fortify cement paste at the atomic scale with biopolymer-based nanomaterials derived from chitin, a waste material produced by the seafood industry in millions of tons annually. The newly enabled concrete is envisioned to transform the U.S. construction market, saving of dollars in repair and reconstruction costs every year and dramatically improving lifecycle energy and emissions costs for infrastructure.

Slick Sheet: Project
Rutgers University, Lawrence Livermore National Laboratory, and the University of Arizona will develop a new hardening method for C3 to address thickness. C3 synthesis currently relies on externally-introduced carbon dioxide for solidification. This program will use microbes mixed into the C3 prior to curing to produce carbon dioxide internally for solidification. This microbial-cured C3 is expected to last longer than OPC at the same thickness, which will reduce the need for concrete repair and replacement.

Slick Sheet: Project
The University of Virginia (U.Va.), in collaboration with C-Crete Technologies, is developing a new approach for making cement by leveraging the ways in which certain mineral silicates react with carbon dioxide and water. These reactions produce mineral phases that are much stronger and more stable than commercial cements, thereby reducing CO2 emissions and energy use over time. Chemically, the products of these reactions share more in common with ancient Roman cements than they do with OPC.

Slick Sheet: Project
LBNL will use advanced microfabrication technology to build and scale low-cost, compact, higher-power multi-beam ion accelerators. These accelerators will be able to increase the ion current up to 100 times, helping to enable a new learning curve for compact accelerator technology. MEMS (micro-electro mechanical systems) technology enables massively parallel, low-cost batch fabrication of ion beam accelerators. The team proposes to scale ion accelerators based on MEMS to higher beam power and pack hundreds to thousands of ion beamlets on silicon wafers.

Slick Sheet: Project
Via Separations will work to develop a membrane platform made from highly robust sheets of graphene-oxide, a material known for its versatility, mechanical strength and relative thermal stability. These sheets will be tailored for specific chemical separation applications to replace conventional, energy-intensive industrial chemical separation processes. Through novel chemistries and innovative system-level integration, the proposed membrane platform promises a tunable molecular filtration capability and is highly resistant to chemical degradation.

Slick Sheet: Project
The University of Wisconsin’s integrated toolset seeks to expedite molten salt materials development for technology by two orders of magnitude, compared with current methods. The team will combine advances in additive manufacturing, in-place testing for materials/salt compatibility, new molten salt-resistant mini-electrode designs, and machine learning algorithms to optimize and accelerate identification of molten salt corrosion-resistant materials. Those materials can be used in energy applications including molten salt nuclear reactors, concentrated solar plants, and thermal storage.