Slick Sheet: Project
Micro Nano Technologies (MNT) proposes a proof-of-concept, thermally driven industrial semi-open absorption heat pump drying system to address current drying technology limitations and increase energy efficiency by 40% over state of the art. Because it is heat source flexible, this efficient, compact, and cost-effective drying system will permit the use of the lowest cost fuel per location, reducing operating costs, saving energy, and lowering greenhouse gas emissions at the grid/system level.

Slick Sheet: Project
Cement is responsible for 8% of global CO2 emissions. Currently, the only economical way to make Portland cement’s key ingredient, lime, is by thermally decomposing limestone. This reaction contributes ~75% of cement’s emissions. Sublime Systems (Sublime) will build an electrochemical system to produce lime using off-peak renewable electricity and calcium sources that do not release CO2. The lime produced may possess exceptional purity, consistency, and reactivity, enabling next-generation low-carbon cements.

Slick Sheet: Project
Rare earth metals (REMs) are crucial for a domestic clean energy future, as they are key to several emerging technologies from wind turbines to electric vehicles. Currently, high energy requirements, hazardous waste generation, and the associated costs inhibit domestic commercial viability of rare earth separation and metallization processes, so rare earth material is sent to China for processing. Phoenix Tailings (PT) has developed novel techniques to separate rare earth oxides (REOs) without the use of hazardous chemicals and reduce them to REMs using 35-45% less energy.

Slick Sheet: Project
Nitricity is developing a non-thermal plasma reactor that uses air, water, and renewable electricity to produce nitrogen fertilizer. If successful, this technology has the potential to economically decarbonize fertilizer production from the Haber-Bosch process, which produces more CO2 than any other chemical-making reaction.

Slick Sheet: Project
Big Blue Technologies (BBT) proposes the world’s most efficient method to produce magnesium (Mg), a light metal with a high energy and carbon footprint whose demand is increasing due to its application in vehicle and aircraft light-weighting and portable electronics. BBT will demonstrate a continuous production system with best-in-class material and energy efficiency by extracting crude Mg from ore in a 50-kW electric arc furnace and purifying it using a dual high-temperature condenser.

Slick Sheet: Project
The team led by the University of Delaware Center for Composite Materials will develop a novel composite material feedstock and robotic placement process to fabricate stand-alone structural pipe within existing pipelines with no disruption in gas service. Repair strategies will be developed for straight and slightly curved pipe sections that will be internally wrapped and repaired using a new robotic-based design facilitating continuous placement of the tailorable feedstock material and creating a stand-alone structural liner within the legacy pipeline.

Slick Sheet: Project
MIT will develop an electrochemical approach to extracting and purifying valuable elements from municipal solid waste incinerator ash, powered solely by electricity from the waste-to-energy plant. The approach is capable of recovering at least 95% of critical materials and at least 90% of other metals while avoiding producing additional hazardous emissions. MIT’s approach uses electrochemical reactions to extract elements that include rare-earth elements and valuable base and noble metals.

Slick Sheet: Project
Currently spent fluid catalytic cracking catalysts are classified as non-hazardous. The quantity is significant at nearly 400,000 tons produced annually, which are sent to landfills. Gypsum waste is estimated at 13 million tons annually with only 2% recycled into new wallboard. If these materials can be profitably combined with the nearly 30 million tons of municipal solid waste (MSW) annually processed in waste-to-energy (WTE) facilities, it will increase the MSW going to thermal processing facilities and recover materials currently being landfilled.

Slick Sheet: Project
Municipal solid waste (MSW) management involves three primary practices: landfilling, recycling, and incineration for energy recovery (waste-to-energy or WTE). WTE is a potentially sustainable method of MSW management because it reduces landfilling and generates energy. Incineration reduces input waste mass by 70%. The remaining 30%—in the form of bottom and fly ashes—has to be discarded or landfilled. A main barrier to beneficial use of these ashes is the variability in their composition, which renders them as an unreliable byproduct.

Slick Sheet: Project
The United States is facing a huge plastic waste challenge. Altex Technologies Corporation will develop a novel process, system design, and catalyst to convert all types of plastic polymers, rubber, composites, and paper to a refinery grade crude oil. This crude oil then can be processed in U.S. refineries to produce gasoline, jet fuel, and diesel oil. Altex will demonstrate an end-to-end plastics-to-liquid fuel prototype system and develop a process design for a 250 ton per day plastic feed plant.