Slick Sheet: Project
Texas Tech University will develop accurate materials fabrication, characterization, and analysis to attempt to resolve the physical understanding of Low-Energy Nuclear Reactions (LENR). Texas Tech will also provide advanced detection of nuclear reaction products as a resource for ARPA-E LENR Exploratory Topic teams.

Slick Sheet: Project
The University of Kentucky’s proposed technology will use CO₂ emitted at or near operating mines and processing operations to reduce the energy consumed during grinding by more than 50% while improving the recovery of critical energy relevant minerals by 20% or greater. In this approach, CO2 will be mixed with ore containing the valuable minerals, especially copper (Cu) and rare earth elements, to improve grinding and separation efficiency. Biological fixation of CO2 will also be studied and employed in producing acid to recover Cu from low grade feedstocks.

Slick Sheet: Project
The University of Texas at Arlington will develop two technologies to produce lithium (Li) and nickel (Ni) from CO2-reactive minerals and rocks that contain calcium (Ca) and magnesium (Mg), while sequestering CO2 in the form of carbonate solids (calcium carbonate, or CaCO3; magnesium carbonate, or MgCO3; and variants thereof). The technologies, acoustic stimulation and electrolytic proton production, use electricity to liberate valuable metal ions from the surrounding mineral matrix at sub-boiling temperatures (~20-80°C).

Slick Sheet: Project
The University of Texas, Austin, will conduct an in-situ injection of CO2 dissolved in water to permanently sequester CO2 via carbon-negative reactions (carbon mineralization), chemically fracture the rock via reaction-driven cracking before mining to reduce extraction and comminution energy by at least 50%, replace the CO2-reactive rock waste with carbonate to reduce energy needed for separation, improve concentrate grade, and increase ore recovery, and expand the lifespan of the mine as a CO2 sink once the ore is exhausted.

Slick Sheet: Project
Stanford University will explore a technical solution based on LENR-active nanoparticles and gaseous deuterium. The team seeks to alleviate critical impediments to test the hypothesis that LENR-active sites in metal nanoparticles can be created through exposure to deuterium gas.

Slick Sheet: Project
Energetics Technology Center will build upon past successes with co-deposition experiments using palladium, lithium, and heavy water together to create an environment in which LENR can occur. These electrolysis experiments decrease the distance from the cathode (location of LENR) to an electronic detector capable of detecting nuclear reaction products to give these experiments the best chance at reliably detecting nuclear reactions, if they are present.

Slick Sheet: Project
Virginia Polytechnic Institute and State University (Virginia Tech) will develop an innovative carbon mineralization/metal extraction technology (CMME) that enables the recovery of energy-relevant elements during direct and indirect carbon mineralization processes. Virginia Tech will introduce an organic phase during the direct carbon mineralization process and in the mineral dissolution step of indirect carbon mineralization process. Energy-relevant elements are purified and separated through advanced separation technologies.

Slick Sheet: Project
The Lawrence Berkeley National Laboratory (LBNL) team proposes to probe for LENR at external excitation energies below 500 eV, systematically varying materials and conditions while monitoring nuclear event rates with a suite of diagnostics. The team will draw from knowledge based on previous work using higher energy ion beams as an external excitation source for LENR on metal hydrides electrochemically loaded with deuterium.

Slick Sheet: Project
The University of Michigan proposes to systematically evaluate claims of excess heat generation during deuteration and correlate it to nuclear and chemical reaction products. The team plans to combine scintillation-based neutron and gamma ray detectors, mass spectrometers, a calorimeter capable of performing microwatt-resolution measurements of heat generation, and ab-initio computational approaches. The proposed research will experimentally and theoretically explore the origin and mechanisms of excess heat generation and LENR.

Slick Sheet: Project
Idaho National Laboratory (INL) will advance state-of-the-art of integrated reservoir stimulation and sensing technology for enhanced in-situ mining (ISM) and carbon mineralization. This project will use disruptive electro-hydraulic fracturing to increase permeability of intact ore bodies, expanding the accessibility of CO2-charged fluid to carbonation-target minerals and dispersed energy-relevant minerals.